Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28110530
PubMed Central
PMC5334781
DOI
10.1021/jacs.6b12934
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nitrogen doping opens possibilities for tailoring the electronic properties and band gap of graphene toward its applications, e.g., in spintronics and optoelectronics. One major obstacle is development of magnetically active N-doped graphene with spin-polarized conductive behavior. However, the effect of nitrogen on the magnetic properties of graphene has so far only been addressed theoretically, and triggering of magnetism through N-doping has not yet been proved experimentally, except for systems containing a high amount of oxygen and thus decreased conductivity. Here, we report the first example of ferromagnetic graphene achieved by controlled doping with graphitic, pyridinic, and chemisorbed nitrogen. The magnetic properties were found to depend strongly on both the nitrogen concentration and type of structural N-motifs generated in the host lattice. Graphenes doped below 5 at. % of nitrogen were nonmagnetic; however, once doped at 5.1 at. % of nitrogen, N-doped graphene exhibited transition to a ferromagnetic state at ∼69 K and displayed a saturation magnetization reaching 1.09 emu/g. Theoretical calculations were used to elucidate the effects of individual chemical forms of nitrogen on magnetic properties. Results showed that magnetic effects were triggered by graphitic nitrogen, whereas pyridinic and chemisorbed nitrogen contributed much less to the overall ferromagnetic ground state. Calculations further proved the existence of exchange coupling among the paramagnetic centers mediated by the conduction electrons.
Zobrazit více v PubMed
Novoselov K. S.; Geim A. K.; Morosov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Science 2004, 306 (5696), 666–669. 10.1126/science.1102896. PubMed DOI
Geim A. K.; Novoselov K. S. Nat. Mater. 2007, 6 (3), 183–191. 10.1038/nmat1849. PubMed DOI
Tombros N.; Jozsa C.; Popinciuc M.; Jonkman H. T.; van Wees B. J. Nature 2007, 448 (7153), 571–574. 10.1038/nature06037. PubMed DOI
Yazyev O. V.; Helm L. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75 (12), 125408.10.1103/PhysRevB.75.125408. DOI
Yazyev O. V.; Katsnelson M. I. Phys. Rev. Lett. 2008, 100 (4), 047209.10.1103/PhysRevLett.100.047209. PubMed DOI
Palacios J. J.; Fernández-Rossier J. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 77 (19), 195428.10.1103/PhysRevB.77.195428. DOI
Červenka J.; Katsnelson M. I.; Flipse C. F. J. Nat. Phys. 2009, 5 (11), 840–844. 10.1038/nphys1399. DOI
Soriano D.; Leconte N.; Ordejón P.; Charlier J.-C.; Palcios J.-J.; Roche S. Phys. Rev. Lett. 2011, 107 (1), 016602.10.1103/PhysRevLett.107.016602. PubMed DOI
Wang Z.; Qin S.; Wang C. Eur. Phys. J. B 2014, 87 (4), 88.10.1140/epjb/e2014-40719-y. DOI
Ito Y.; Christodoulou C.; Nardi M. V.; Koch N.; Kläui M.; Sachdev H.; Müllen K. J. Am. Chem. Soc. 2015, 137 (24), 7678–7685. 10.1021/ja512897m. PubMed DOI
Poh H. L.; Pumera M. ChemElectroChem 2015, 2 (2), 190–199. 10.1002/celc.201402307. DOI
Qu L.; Liu Y.; Baek J.-B.; Dai L. ACS Nano 2010, 4 (3), 1321–1326. 10.1021/nn901850u. PubMed DOI
Wang X.; Li X.; Zhang L.; Yoon Y.; Weber P. K.; Wang H.; Guo J.; Dai H. Science 2009, 324 (5928), 768–771. 10.1126/science.1170335. PubMed DOI
Wang Z. G.; Li P. J.; Chen Y. F.; Liu J. B.; Zhang W. L.; Guo Z.; Dong M. D.; Li Y. R. J. Mater. Chem. C 2015, 3 (24), 6301–6306. 10.1039/C5TC00563A. DOI
Reddy A. L. M.; Srivastava A.; Gowda S. R.; Gullapalli H.; Dubey M.; Ajayan P. M. ACS Nano 2010, 4 (11), 6337–6342. 10.1021/nn101926g. PubMed DOI
Kwon O. S.; Park S. J.; Hong J. Y.; Han A. R.; Lee J. S.; Lee J. S.; Oh J. H.; Jang J. ACS Nano 2012, 6 (6), 1486–1493. 10.1021/nn204395n. PubMed DOI
Jeong H. M.; Lee J. W.; Shin W. H.; Choi Y. J.; Shin H. J.; Kang J. K.; Choi J. W. Nano Lett. 2011, 11 (6), 2472–2477. 10.1021/nl2009058. PubMed DOI
Chen L. F.; Zhang X. D.; Liang H. W.; Kong M. G.; Guan Q. F.; Chen P.; Wu Z. Y.; Yu S. H. ACS Nano 2012, 6 (8), 7092–7102. 10.1021/nn302147s. PubMed DOI
Huang X.; Qi X. Y.; Boey F.; Zhang H. Chem. Soc. Rev. 2012, 41 (2), 666–686. 10.1039/C1CS15078B. PubMed DOI
Wang Y.; Shao Y. Y.; Matson D. W.; Li J. H.; Lin Y. H. ACS Nano 2010, 4 (4), 1790–1798. 10.1021/nn100315s. PubMed DOI
Chaban V. V.; Prezhdo O. V. J. Am. Chem. Soc. 2015, 137 (36), 11688–11694. 10.1021/jacs.5b05890. PubMed DOI
Tuček J.; Błoński P.; Sofer Z.; Šimek P.; Petr M.; Pumera M.; Otyepka M.; Zbořil R. Adv. Mater. 2016, 28 (25), 5045–5053. 10.1002/adma.201600939. PubMed DOI
Li J. Y.; Li X. H.; Zhao P. H.; Lei D. Y.; Li W. L.; Bai J. T.; Ren Z. Y.; Xu X. L. Carbon 2015, 84, 460–468. 10.1016/j.carbon.2014.12.024. DOI
Liu Y.; Tang N. J.; Wan X. G.; Feng Q.; Li M.; Xu Q. H.; Liu F. C.; Du Y. W. Sci. Rep. 2013, 3, 2566.10.1038/srep02566. PubMed DOI PMC
Wang H.; Maiyalagan T.; Wang X. ACS Catal. 2012, 2 (5), 781–794. 10.1021/cs200652y. DOI
Lazar P.; Zbořil R.; Pumera M.; Otyepka M. Phys. Chem. Chem. Phys. 2014, 16 (27), 14231–14235. 10.1039/c4cp01638f. PubMed DOI
Kresse G.; Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54 (16), 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G.; Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59 (3), 1758–1775. 10.1103/PhysRevB.59.1758. DOI
Blöchl P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Blöchl P. E.; Jepsen O.; Andersen O. K. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49 (23), 16223–16233. 10.1103/PhysRevB.49.16223. PubMed DOI
Bader R.Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1990.
Henkelman G.; Arnaldsson A.; Jonsson H. Comput. Mater. Sci. 2006, 36 (3), 354–360. 10.1016/j.commatsci.2005.04.010. DOI
Sanville E.; Kenny S. D.; Smith R.; Henkelman G. J. Comput. Chem. 2007, 28 (5), 899–908. 10.1002/jcc.20575. PubMed DOI
Nair R. R.; Tsai I.-L.; Sepioni M.; Lehtinen O.; Keinonen J.; Krasheninnikov A. V.; Castro Neto A. H.; Katsnelson M. I.; Geim A. K.; Grigorieva I. V. Nat. Commun. 2013, 4, 2010.10.1038/ncomms3010. PubMed DOI
Zhao L. B.; Huang Y. F.; Liu X. M.; Anema J. R.; Wu D. Y.; Ren B.; Tian Z. Q. Phys. Chem. Chem. Phys. 2012, 14, 12919.10.1039/c2cp41502j. PubMed DOI
Makarova T. L.; Shelankov A. L.; Zyrianova A. A.; Veinger A. I.; Tisnek T. V.; Lahderanta E.; Shames A. I.; Okotrub A. V.; Bulusheva L. G.; Chekhova G. N.; Pinakov D. V.; Asanov I. P.; Sljivancanin Z. Sci. Rep. 2015, 5, 13382.10.1038/srep13382. PubMed DOI PMC
Seo D. H.; Yue Z. J.; Wang X. L.; Levchenko I.; Kumar S. L.; Douc S. X.; Ostrikov K. Chem. Commun. 2013, 49 (99), 11633–11637. 10.1039/c3cc46218h. PubMed DOI
Edwards D. M.; Katsnelson M. I. J. Phys.: Condens. Matter 2006, 18 (31), 7209–7225. 10.1088/0953-8984/18/31/016. DOI
Fujita M.; Wakabayashi K.; Nakada K.; Kusakabe K. J. Phys. Soc. Jpn. 1996, 65 (7), 1920–1923. 10.1143/JPSJ.65.1920. DOI
Nair R. R.; Sepioni M.; Tsai I.-L.; Lehtinen O.; Keinonen J.; Krasheninnikov A. V.; Thomson T.; Geim A. K.; Grigorieva I. V. Nat. Phys. 2012, 8 (3), 199–202. 10.1038/nphys2183. DOI
Lin Y. C.; Teng P. Y.; Yeh C. H.; Koshino M.; Po-Chiu P. W.; Suenaga K. Nano Lett. 2015, 15 (11), 7408–7413. 10.1021/acs.nanolett.5b02831. PubMed DOI
Lee E. C.; Choi Y. C.; Kim W. Y.; Singh N. J.; Lee S.; Shim J. H.; Kim K. S. Chem. - Eur. J. 2010, 16 (40), 12141–12146. 10.1002/chem.201000858. PubMed DOI
Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene