Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene

. 2017 Mar 01 ; 139 (8) : 3171-3180. [epub] 20170216

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28110530

Nitrogen doping opens possibilities for tailoring the electronic properties and band gap of graphene toward its applications, e.g., in spintronics and optoelectronics. One major obstacle is development of magnetically active N-doped graphene with spin-polarized conductive behavior. However, the effect of nitrogen on the magnetic properties of graphene has so far only been addressed theoretically, and triggering of magnetism through N-doping has not yet been proved experimentally, except for systems containing a high amount of oxygen and thus decreased conductivity. Here, we report the first example of ferromagnetic graphene achieved by controlled doping with graphitic, pyridinic, and chemisorbed nitrogen. The magnetic properties were found to depend strongly on both the nitrogen concentration and type of structural N-motifs generated in the host lattice. Graphenes doped below 5 at. % of nitrogen were nonmagnetic; however, once doped at 5.1 at. % of nitrogen, N-doped graphene exhibited transition to a ferromagnetic state at ∼69 K and displayed a saturation magnetization reaching 1.09 emu/g. Theoretical calculations were used to elucidate the effects of individual chemical forms of nitrogen on magnetic properties. Results showed that magnetic effects were triggered by graphitic nitrogen, whereas pyridinic and chemisorbed nitrogen contributed much less to the overall ferromagnetic ground state. Calculations further proved the existence of exchange coupling among the paramagnetic centers mediated by the conduction electrons.

Zobrazit více v PubMed

Novoselov K. S.; Geim A. K.; Morosov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Science 2004, 306 (5696), 666–669. 10.1126/science.1102896. PubMed DOI

Geim A. K.; Novoselov K. S. Nat. Mater. 2007, 6 (3), 183–191. 10.1038/nmat1849. PubMed DOI

Tombros N.; Jozsa C.; Popinciuc M.; Jonkman H. T.; van Wees B. J. Nature 2007, 448 (7153), 571–574. 10.1038/nature06037. PubMed DOI

Yazyev O. V.; Helm L. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75 (12), 125408.10.1103/PhysRevB.75.125408. DOI

Yazyev O. V.; Katsnelson M. I. Phys. Rev. Lett. 2008, 100 (4), 047209.10.1103/PhysRevLett.100.047209. PubMed DOI

Palacios J. J.; Fernández-Rossier J. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 77 (19), 195428.10.1103/PhysRevB.77.195428. DOI

Červenka J.; Katsnelson M. I.; Flipse C. F. J. Nat. Phys. 2009, 5 (11), 840–844. 10.1038/nphys1399. DOI

Soriano D.; Leconte N.; Ordejón P.; Charlier J.-C.; Palcios J.-J.; Roche S. Phys. Rev. Lett. 2011, 107 (1), 016602.10.1103/PhysRevLett.107.016602. PubMed DOI

Wang Z.; Qin S.; Wang C. Eur. Phys. J. B 2014, 87 (4), 88.10.1140/epjb/e2014-40719-y. DOI

Ito Y.; Christodoulou C.; Nardi M. V.; Koch N.; Kläui M.; Sachdev H.; Müllen K. J. Am. Chem. Soc. 2015, 137 (24), 7678–7685. 10.1021/ja512897m. PubMed DOI

Poh H. L.; Pumera M. ChemElectroChem 2015, 2 (2), 190–199. 10.1002/celc.201402307. DOI

Qu L.; Liu Y.; Baek J.-B.; Dai L. ACS Nano 2010, 4 (3), 1321–1326. 10.1021/nn901850u. PubMed DOI

Wang X.; Li X.; Zhang L.; Yoon Y.; Weber P. K.; Wang H.; Guo J.; Dai H. Science 2009, 324 (5928), 768–771. 10.1126/science.1170335. PubMed DOI

Wang Z. G.; Li P. J.; Chen Y. F.; Liu J. B.; Zhang W. L.; Guo Z.; Dong M. D.; Li Y. R. J. Mater. Chem. C 2015, 3 (24), 6301–6306. 10.1039/C5TC00563A. DOI

Reddy A. L. M.; Srivastava A.; Gowda S. R.; Gullapalli H.; Dubey M.; Ajayan P. M. ACS Nano 2010, 4 (11), 6337–6342. 10.1021/nn101926g. PubMed DOI

Kwon O. S.; Park S. J.; Hong J. Y.; Han A. R.; Lee J. S.; Lee J. S.; Oh J. H.; Jang J. ACS Nano 2012, 6 (6), 1486–1493. 10.1021/nn204395n. PubMed DOI

Jeong H. M.; Lee J. W.; Shin W. H.; Choi Y. J.; Shin H. J.; Kang J. K.; Choi J. W. Nano Lett. 2011, 11 (6), 2472–2477. 10.1021/nl2009058. PubMed DOI

Chen L. F.; Zhang X. D.; Liang H. W.; Kong M. G.; Guan Q. F.; Chen P.; Wu Z. Y.; Yu S. H. ACS Nano 2012, 6 (8), 7092–7102. 10.1021/nn302147s. PubMed DOI

Huang X.; Qi X. Y.; Boey F.; Zhang H. Chem. Soc. Rev. 2012, 41 (2), 666–686. 10.1039/C1CS15078B. PubMed DOI

Wang Y.; Shao Y. Y.; Matson D. W.; Li J. H.; Lin Y. H. ACS Nano 2010, 4 (4), 1790–1798. 10.1021/nn100315s. PubMed DOI

Chaban V. V.; Prezhdo O. V. J. Am. Chem. Soc. 2015, 137 (36), 11688–11694. 10.1021/jacs.5b05890. PubMed DOI

Tuček J.; Błoński P.; Sofer Z.; Šimek P.; Petr M.; Pumera M.; Otyepka M.; Zbořil R. Adv. Mater. 2016, 28 (25), 5045–5053. 10.1002/adma.201600939. PubMed DOI

Li J. Y.; Li X. H.; Zhao P. H.; Lei D. Y.; Li W. L.; Bai J. T.; Ren Z. Y.; Xu X. L. Carbon 2015, 84, 460–468. 10.1016/j.carbon.2014.12.024. DOI

Liu Y.; Tang N. J.; Wan X. G.; Feng Q.; Li M.; Xu Q. H.; Liu F. C.; Du Y. W. Sci. Rep. 2013, 3, 2566.10.1038/srep02566. PubMed DOI PMC

Wang H.; Maiyalagan T.; Wang X. ACS Catal. 2012, 2 (5), 781–794. 10.1021/cs200652y. DOI

Lazar P.; Zbořil R.; Pumera M.; Otyepka M. Phys. Chem. Chem. Phys. 2014, 16 (27), 14231–14235. 10.1039/c4cp01638f. PubMed DOI

Kresse G.; Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54 (16), 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G.; Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59 (3), 1758–1775. 10.1103/PhysRevB.59.1758. DOI

Blöchl P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Blöchl P. E.; Jepsen O.; Andersen O. K. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49 (23), 16223–16233. 10.1103/PhysRevB.49.16223. PubMed DOI

Bader R.Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1990.

Henkelman G.; Arnaldsson A.; Jonsson H. Comput. Mater. Sci. 2006, 36 (3), 354–360. 10.1016/j.commatsci.2005.04.010. DOI

Sanville E.; Kenny S. D.; Smith R.; Henkelman G. J. Comput. Chem. 2007, 28 (5), 899–908. 10.1002/jcc.20575. PubMed DOI

Nair R. R.; Tsai I.-L.; Sepioni M.; Lehtinen O.; Keinonen J.; Krasheninnikov A. V.; Castro Neto A. H.; Katsnelson M. I.; Geim A. K.; Grigorieva I. V. Nat. Commun. 2013, 4, 2010.10.1038/ncomms3010. PubMed DOI

Zhao L. B.; Huang Y. F.; Liu X. M.; Anema J. R.; Wu D. Y.; Ren B.; Tian Z. Q. Phys. Chem. Chem. Phys. 2012, 14, 12919.10.1039/c2cp41502j. PubMed DOI

Makarova T. L.; Shelankov A. L.; Zyrianova A. A.; Veinger A. I.; Tisnek T. V.; Lahderanta E.; Shames A. I.; Okotrub A. V.; Bulusheva L. G.; Chekhova G. N.; Pinakov D. V.; Asanov I. P.; Sljivancanin Z. Sci. Rep. 2015, 5, 13382.10.1038/srep13382. PubMed DOI PMC

Seo D. H.; Yue Z. J.; Wang X. L.; Levchenko I.; Kumar S. L.; Douc S. X.; Ostrikov K. Chem. Commun. 2013, 49 (99), 11633–11637. 10.1039/c3cc46218h. PubMed DOI

Edwards D. M.; Katsnelson M. I. J. Phys.: Condens. Matter 2006, 18 (31), 7209–7225. 10.1088/0953-8984/18/31/016. DOI

Fujita M.; Wakabayashi K.; Nakada K.; Kusakabe K. J. Phys. Soc. Jpn. 1996, 65 (7), 1920–1923. 10.1143/JPSJ.65.1920. DOI

Nair R. R.; Sepioni M.; Tsai I.-L.; Lehtinen O.; Keinonen J.; Krasheninnikov A. V.; Thomson T.; Geim A. K.; Grigorieva I. V. Nat. Phys. 2012, 8 (3), 199–202. 10.1038/nphys2183. DOI

Lin Y. C.; Teng P. Y.; Yeh C. H.; Koshino M.; Po-Chiu P. W.; Suenaga K. Nano Lett. 2015, 15 (11), 7408–7413. 10.1021/acs.nanolett.5b02831. PubMed DOI

Lee E. C.; Choi Y. C.; Kim W. Y.; Singh N. J.; Lee S.; Shim J. H.; Kim K. S. Chem. - Eur. J. 2010, 16 (40), 12141–12146. 10.1002/chem.201000858. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace