Addressing the Molecular Mechanism of Longitudinal Lamin Assembly Using Chimeric Fusions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32645958
PubMed Central
PMC7407374
DOI
10.3390/cells9071633
PII: cells9071633
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray crystallography, chemical cross-linking, intermediate filaments, mass spectrometry, nuclear lamins,
- MeSH
- hmotnostní spektrometrie MeSH
- krystalografie rentgenová MeSH
- lamin typ A chemie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lamin typ A MeSH
The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal 'head-to-tail' interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends.
Department of Biochemistry Charles University 12800 Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences 14220 Prague Czech Republic
Laboratory for Biocrystallography KU Leuven 3000 Leuven Belgium
Zobrazit více v PubMed
Turgay Y., Medalia O. The structure of lamin filaments in somatic cells as revealed by cryo-electron tomography. Nucleus. 2017;8:475–481. doi: 10.1080/19491034.2017.1337622. PubMed DOI PMC
Collas P., Lund E.G., Oldenburg A.R. Closing the (nuclear) envelope on the genome: How nuclear lamins interact with promoters and modulate gene expression. BioEssays. 2014;36:75–83. doi: 10.1002/bies.201300138. PubMed DOI
Frock R.L., Kudlow B.A., Evans A.M., Jameson S.A., Hauschka S.D., Kennedy B.K. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev. 2006;20:486–500. doi: 10.1101/gad.1364906. PubMed DOI PMC
Maynard S., Keijzers G., Akbari M., Ezra M.B., Hall A., Morevati M., Scheibye-Knudsen M., Gonzalo S., Bartek J., Bohr V.A. Lamin A/C promotes DNA base excision repair. Nucleic Acids Res. 2019;47:11709–11728. doi: 10.1093/nar/gkz912. PubMed DOI PMC
Qi R., Xu N., Wang G., Ren H., Li S., Lei J., Lin Q., Wang L., Gu X., Zhang H., et al. The lamin-A/C-LAP2α-BAF1 protein complex regulates mitotic spindle assembly and positioning. J. Cell Sci. 2015;128:2830–2841. doi: 10.1242/jcs.164566. PubMed DOI
Shumaker D.K., Solimando L., Sengupta K., Shimi T., Adam S.A., Grunwald A., Strelkov S.V., Aebi U., Cardoso M.C., Goldman R.D. The highly conserved nuclear lamin Ig-fold binds to PCNA: Its role in DNA replication. J. Cell Biol. 2008;181:269–280. doi: 10.1083/jcb.200708155. PubMed DOI PMC
Shimi T., Pfleghaar K., Kojima S.I., Pack C.G., Solovei I., Goldman A.E., Adam S.A., Shumaker D.K., Kinjo M., Cremer T., et al. The A- and B-type nuclear lamin networks: Microdomains involved in chromatin organization and transcription. Genes Dev. 2008;22:3409–3421. doi: 10.1101/gad.1735208. PubMed DOI PMC
Kang S.M., Yoon M.H., Park B.J. Laminopathies; Mutations on single gene and various human genetic diseases. BMB Rep. 2018;51:327–337. doi: 10.5483/BMBRep.2018.51.7.113. PubMed DOI PMC
Broers J.L.V., Ramaekers F.C.S. The role of the nuclear lamina in cancer and apoptosis. Adv. Exp. Med. Biol. 2014;773:27–48. PubMed
de Toledo M., Lopez-Mejia I.C., Cavelier P., Pratlong M., Barrachina C., Gromada X., Annicotte J.-S., Tazi J., Chavey C. Lamin C Counteracts Glucose Intolerance in Aging, Obesity and Diabetes Through β-Cell Adaptation. Diabetes. 2020;69:647–660. doi: 10.2337/db19-0377. PubMed DOI
Pradhan R., Jayakrishnan Nallappa M., Sengupta K. Lamin A/C modulates spatial organization and function of the Hsp70 gene locus via Nuclear Myosin I (NM1) J.Cell. Sci. 2020;133 doi: 10.1242/jcs.236265. jcs:236265. PubMed DOI
Lilina A.V., Chernyatina A.A., Guzenko D., Strelkov S.V. Lateral A11 type tetramerization in lamins. J. Struct. Biol. 2020;209:107404. doi: 10.1016/j.jsb.2019.10.006. PubMed DOI
Lupas A.N., Bassler J. Coiled Coils—A Model System for the 21st Century. Trends Biochem. Sci. 2017;42:130–140. doi: 10.1016/j.tibs.2016.10.007. PubMed DOI
Chernyatina A.A., Guzenko D., Strelkov S.V. Intermediate filament structure: The bottom-up approach. Curr. Opin. Cell Biol. 2015;32:65–72. doi: 10.1016/j.ceb.2014.12.007. PubMed DOI
Ahn J., Jo I., Kang S.M., Hong S., Kim S., Jeong S., Kim Y.H., Park B.J., Ha N.C. Structural basis for lamin assembly at the molecular level. Nat. Commun. 2019;10:3757. doi: 10.1038/s41467-019-11684-x. PubMed DOI PMC
Weber K., Geisler N. Intermediate Filaments: Structural Conservation and Divergence. Ann. N. Y. Acad. Sci. 1985;455:126–143. doi: 10.1111/j.1749-6632.1985.tb50408.x. PubMed DOI
Heitlinger E., Peter M., Lustig A., Villiger W., Nigg E.A., Aebi U. The role of the head and tail domain in lamin structure and assembly: Analysis of bacterially expressed chicken Lamin A and truncated B2 lamins. J. Struct. Biol. 1992;108:74–91. doi: 10.1016/1047-8477(92)90009-Y. PubMed DOI
Hess J.F., Budamagunta M.S., Aziz A., FitzGerald P.G., Voss J.C. Electron paramagnetic resonance analysis of the vimentin tail domain reveals points of order in a largely disordered region and conformational adaptation upon filament assembly. Protein Sci. 2013;22:47–55. doi: 10.1002/pro.2182. PubMed DOI PMC
Lee C.H., Coulombe P.A. Self-organization of keratin intermediate filaments into cross-linked networks. J. Cell Biol. 2009;186:409–421. doi: 10.1083/jcb.200810196. PubMed DOI PMC
Geisler N., Schünemann J., Weber K., Häner M., Aebi U. Assembly and architecture of invertebrate cytoplasmic intermediate filaments reconcile features of vertebrate cytoplasmic and nuclear lamin-type intermediate filaments. J. Mol. Biol. 1998;282:601–617. doi: 10.1006/jmbi.1998.1995. PubMed DOI
Heitlinger E., Peter M., Lustig A., Nigg E.A. Expression of Chicken Lamin B2 in Escherichia coli: Characterization of its Structure, Assembly, and Molecular Interactions. Cell. 1991;113:485–495. doi: 10.1083/jcb.113.3.485. PubMed DOI PMC
Aebi U., Julie C., Buble L., Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986;324:698–699. doi: 10.1038/323560a0. PubMed DOI
Turgay Y., Eibauer M., Goldman A.E., Shimi T., Khayat M., Ben-Harush K., Dubrovsky-Gaupp A., Sapra K.T., Goldman R.D., Medalia O. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–264. doi: 10.1038/nature21382. PubMed DOI PMC
Stuurman N., Heins S., Aebi U., Mü M.E. Nuclear Lamins: Their Structure, Assembly, and Interactions. J. Struct. Biol. 1998;122:42–66. doi: 10.1006/jsbi.1998.3987. PubMed DOI
Ben-Harush K., Wiesel N., Frenkiel-Krispin D., Moeller D., Soreq E., Aebi U., Herrmann H., Gruenbaum Y., Medalia O. The Supramolecular Organization of the C. elegans Nuclear Lamin Filament. J. Mol. Biol. 2009;386:1392–1402. doi: 10.1016/j.jmb.2008.12.024. PubMed DOI
Foeger N., Wiesel N., Lotsch D., Mücke N., Kreplak L., Aebi U., Gruenbaum Y., Herrmann H. Solubility properties and specific assembly pathways of the B-type lamin from Caenorhabditis elegans. J. Struct. Biol. 2006;155:340–350. doi: 10.1016/j.jsb.2006.03.026. PubMed DOI
Isobe K., Gohara R., Ueda T., Takasaki Y., Ando S. The Last Twenty Residues in the Head Domain of Mouse Lamin A Contain Important Structural Elements for Formation of Head-to-Tail Polymers in Vitro. Biosci. Biotechnol. Biochem. 2007;71:1252–1259. doi: 10.1271/bbb.60674. PubMed DOI
Strelkov S.V., Herrmann H., Geisler N., Lustig A., Ivaninskii S., Zimbelmann R., Burkhard P., Aebi U. Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J. Mol. Biol. 2001;306:773–781. doi: 10.1006/jmbi.2001.4442. PubMed DOI
Chernyatina A.A., Hess J.F., Guzenko D., Voss J.C., Strelkov S.V. How to Study Intermediate Filaments in Atomic Detail. Methods Enzymol. 2016;568:3–33. PubMed
Meier M., Padilla G.P., Herrmann H., Wedig T., Hergt M., Patel T.R., Stetefeld J., Aebi U., Burkhard P. Vimentin Coil 1A-A Molecular Switch Involved in the Initiation of Filament Elongation. J. Mol. Biol. 2009;390:245–261. doi: 10.1016/j.jmb.2009.04.067. PubMed DOI
Strelkov S.V., Herrmann H., Geisler N., Wedig T., Zimbelmann R., Aebi U., Burkhard P. Conserved segments 1A and 2B of the intermediate filament dimer: Their atomic structures and role in filament assembly. EMBO J. 2002;21:1255–1266. doi: 10.1093/emboj/21.6.1255. PubMed DOI PMC
Kapinos L.E., Burkhard P., Herrmann H., Aebi U., Strelkov S.V., Müller M. Simultaneous Formation of Right- and Left-handed Anti-parallel Coiled-coil Interfaces by a Coil2 Fragment of Human Lamin A. J. Mol. Biol. 2011;408:135–146. doi: 10.1016/j.jmb.2011.02.037. PubMed DOI
Tao Y., Strelkov S.V., Mesyanzhinov V.V., Rossmann M.G. Structure of bacteriophage T4 fibritin: A segmented coiled coil and the role of the C-terminal domain. Structure. 1997;5:789–798. doi: 10.1016/S0969-2126(97)00233-5. PubMed DOI
O’Shea E.K., Klemm J.D., Kim P.S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991;254:539–544. PubMed
Morais M.C., Kanamarul S., Badasso M.O., Koti J.S., Owen B.A.L., McMurray C.T., Anderson D.L., Rossmann M.G. Bacteriophage φ29 scaffolding protein gp7 before and after prohead assembly. Nat. Struct. Biol. 2003;10:572–576. doi: 10.1038/nsb939. PubMed DOI
Slep K.C., Rogers S.L., Elliott S.L., Ohkura H., Kolodziej P.A., Vale R.D. Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J. Cell Biol. 2005;168:587–598. doi: 10.1083/jcb.200410114. PubMed DOI PMC
Frye J., Klenchin V.A., Rayment I. Structure of the tropomyosin overlap complex from chicken smooth muscle: Insight into the diversity of N-terminal recognition. Biochemistry. 2010;49:4908–4920. doi: 10.1021/bi100349a. PubMed DOI PMC
Taylor K.C., Buvoli M., Korkmaz E.N., Buvoli A., Zheng Y., Heinze N.T., Cui Q., Leinwand L.A., Rayment I. Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly. Proc. Natl. Acad. Sci. USA. 2015;112:E3806–E3815. doi: 10.1073/pnas.1505813112. PubMed DOI PMC
Korkmaz E.N., Taylor K.C., Andreas M.P., Ajay G., Heinze N.T., Cui Q., Rayment I. A composite approach towards a complete model of the myosin rod. Proteins Struct. Funct. Bioinform. 2016;84:172–189. doi: 10.1002/prot.24964. PubMed DOI PMC
Kapinos L.E., Schumacher J., Mücke N., Machaidze G., Burkhard P., Aebi U., Strelkov S.V., Herrmann H. Characterization of the Head-to-Tail Overlap Complexes Formed by Human Lamin A, B1 and B2 ‘Half-minilamin’ Dimers. J. Mol. Biol. 2010;396:719–731. doi: 10.1016/j.jmb.2009.12.001. PubMed DOI
Kochin V., Shimi T., Torvaldson E., Adam S.A., Goldman A., Pack C.G., Melo-Cardenas J., Imanishi S.Y., Goldman R.D., Eriksson J.E. Interphase phosphorylation of lamin A. J. Cell Sci. 2014;127:2683–2696. doi: 10.1242/jcs.141820. PubMed DOI PMC
Weeks S.D., Drinker M., Loll P.J. Ligation independent cloning vectors for expression of SUMO fusions. Protein Expr. Purif. 2007;53:40–50. doi: 10.1016/j.pep.2006.12.006. PubMed DOI PMC
Studier F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 2005;41:207–234. doi: 10.1016/j.pep.2005.01.016. PubMed DOI
Studier F.W. Stable expression clones and auto-induction for protein production in E. Coli. Methods Mol. Biol. 2014;1091:17–32. PubMed
Kabsch W. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Panjikar S., Parthasarathy V., Lamzin V.S., Weiss M.S., Tucker P.A. Auto-Rickshaw: An automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr. Sect. D Biol. Crystallogr. 2005;61:449–457. doi: 10.1107/S0907444905001307. PubMed DOI
Sheldrick G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Read R.J., McCoy A.J. Using SAD data in Phaser. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011;67:338–344. doi: 10.1107/S0907444910051371. PubMed DOI PMC
Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. Sect. D Biol. Crystallogr. 2006;62:1002–1011. doi: 10.1107/S0907444906022116. PubMed DOI
Winter G. Xia2: An expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 2010;43:186–190. doi: 10.1107/S0021889809045701. DOI
Winter G., Waterman D.G., Parkhurst J.M., Brewster A.S., Gildea R.J., Gerstel M., Fuentes-Montero L., Vollmar M., Michels-Clark T., Young I.D., et al. DIALS: Implementation and evaluation of a new integration package. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:85–97. doi: 10.1107/S2059798317017235. PubMed DOI PMC
Evans P. Scaling and assessment of data quality. Acta Crystallogr. Sect. D Biol. Crystallogr. 2006;62:72–82. doi: 10.1107/S0907444905036693. PubMed DOI
Evans P.R., Murshudov G.N. How good are my data and what is the resolution? Acta Crystallogr. Sect. D Biol. Crystallogr. 2013;69:1204–1214. doi: 10.1107/S0907444913000061. PubMed DOI PMC
Vagin A., Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010;66:22–25. doi: 10.1107/S0907444909042589. PubMed DOI
Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Vagin A.A., Steiner R.A., Lebedev A.A., Potterton L., McNicholas S., Long F., Murshudov G.N. REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004;60:2184–2195. doi: 10.1107/S0907444904023510. PubMed DOI
Bricogne G., Blanc E., Brand M., Flensburg C., Keller P., Paciorek W., Roversi P., Sharff A., Smart O.S., Vonrhein C., et al. BUSTER. United Kingdom Glob. Phasing Ltd.; Cambridge, UK: 2017.
Strelkov S.V., Burkhard P. Analysis of α-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation. J. Struct. Biol. 2002;137:54–64. doi: 10.1006/jsbi.2002.4454. PubMed DOI
Candiano G., Bruschi M., Musante L., Santucci L., Ghiggeri G.M., Carnemolla B., Orecchia P., Zardi L., Righetti P.G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25:1327–1333. doi: 10.1002/elps.200305844. PubMed DOI
Rozbeský D., Rosůlek M., Kukačka Z., Chmelík J., Man P., Novák P. Impact of Chemical Cross-Linking on Protein Structure and Function. Anal. Chem. 2018;90:1104–1113. doi: 10.1021/acs.analchem.7b02863. PubMed DOI
Fiala J., Kukačka Z., Novák P. Influence of cross-linker polarity on selectivity towards lysine side chains. J. Proteomics. 2020;218 doi: 10.1016/j.jprot.2020.103716. PubMed DOI
Götze M., Pettelkau J., Schaks S., Bosse K., Ihling C.H., Krauth F., Fritzsche R., Kühn U., Sinz A. StavroX-A software for analyzing crosslinked products in protein interaction studies. J. Am. Soc. Mass Spectrom. 2012;23:76–87. doi: 10.1007/s13361-011-0261-2. PubMed DOI
Iacobucci C., Götze M., Ihling C.H., Piotrowski C., Arlt C., Schäfer M., Hage C., Schmidt R., Sinz A. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions. Nat. Protoc. 2018;13:2864–2889. doi: 10.1038/s41596-018-0068-8. PubMed DOI
Strelkov S.V., Schumacher J., Burkhard P., Aebi U., Herrmann H., Mu M.E. Crystal Structure of the Human Lamin A Coil 2B Dimer: Implications for the Head-to-tail Association of Nuclear Lamins. J. Mol. Biol. 2004;343:1067–1080. doi: 10.1016/j.jmb.2004.08.093. PubMed DOI
Heo L., Lee H., Seok C. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking. Sci. Rep. 2016;6:1–10. doi: 10.1038/srep32153. PubMed DOI PMC
Ko J., Park H., Heo L., Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40:294–297. doi: 10.1093/nar/gks493. PubMed DOI PMC
Kraatz S.H.W., Bianchi S., Steinmetz M.O. Combinatorial use of disulfide bridges and native sulfur-SAD phasing for rapid structure determination of coiled-coils. Biosci. Rep. 2018;38:1–11. doi: 10.1042/BSR20181073. PubMed DOI PMC
Guzenko D., Strelkov S.V. Optimal data-driven parameterization of coiled coils. J. Struct. Biol. 2018;204:125–129. doi: 10.1016/j.jsb.2018.07.001. PubMed DOI
Doig A.J., Baldwin R.L. N- and C-capping preferences for all 20 amino acids in α-helical peptides. Protein Sci. 1995;4:1325–1336. doi: 10.1002/pro.5560040708. PubMed DOI PMC
Makarov A.A., Zou J., Houston D.R., Spanos C., Solovyova A.S., Cardenal-Peralta C., Rappsilber J., Schirmer E.C. Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. Nat. Commun. 2019;10:3056. doi: 10.1038/s41467-019-11063-6. PubMed DOI PMC
Rappsilber J. The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J. Struct. Biol. 2011;173:530–540. doi: 10.1016/j.jsb.2010.10.014. PubMed DOI PMC
Krissinel E., Henrick K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007;372:774–797. doi: 10.1016/j.jmb.2007.05.022. PubMed DOI
Herrmann H., Aebi U. Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration Into Functionally Distinct Intracellular Scaffolds. Annu. Rev. Biochem. 2004;73:749–789. doi: 10.1146/annurev.biochem.73.011303.073823. PubMed DOI
Kaus-Drobek M., Mücke N., Szczepanowski R.H., Wedig T., Czarnocki-Cieciura M., Polakowska M., Herrmann H., Wysłouch-Cieszyńska A., Dadlez M. Vimentin S-glutathionylation at Cys328 inhibits filament elongation and induces severing of mature filaments in vitro. FEBS J. 2020 doi: 10.1111/febs.15321. PubMed DOI PMC
Simon D.N., Zastrow M.S., Wilson K.L. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus. 2010;1:264–272. doi: 10.4161/nucl.11799. PubMed DOI PMC
Samson C., Petitalot A., Celli F., Herrada I., Ropars V., Le Du M.-H., Nhiri N., Jacquet E., Arteni A.-A., Buendia B., et al. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res. 2018;46:10460–10473. doi: 10.1093/nar/gky736. PubMed DOI PMC
Simon D.N., Wilson K.L. Partners and post-translational modifications of nuclear lamins. Chromosoma. 2013;122:13–31. doi: 10.1007/s00412-013-0399-8. PubMed DOI PMC