Molecular structure of soluble vimentin tetramers

. 2023 May 31 ; 13 (1) : 8841. [epub] 20230531

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37258554
Odkazy

PubMed 37258554
PubMed Central PMC10232555
DOI 10.1038/s41598-023-34814-4
PII: 10.1038/s41598-023-34814-4
Knihovny.cz E-zdroje

Intermediate filaments (IFs) are essential constituents of the metazoan cytoskeleton. A vast family of cytoplasmic IF proteins are capable of self-assembly from soluble tetrameric species into typical 10-12 nm wide filaments. The primary structure of these proteins includes the signature central 'rod' domain of ~ 300 residues which forms a dimeric α-helical coiled coil composed of three segments (coil1A, coil1B and coil2) interconnected by non-helical, flexible linkers (L1 and L12). The rod is flanked by flexible terminal head and tail domains. At present, the molecular architecture of mature IFs is only poorly known, limiting our capacity to rationalize the effect of numerous disease-related mutations found in IF proteins. Here we addressed the molecular structure of soluble vimentin tetramers which are formed by two antiparallel, staggered dimers with coil1B domains aligned (A11 tetramers). By examining a series of progressive truncations, we show that the presence of the coil1A domain is essential for the tetramer formation. In addition, we employed a novel chemical cross-linking pipeline including isotope labelling to identify intra- and interdimeric cross-links within the tetramer. We conclude that the tetramer is synergistically stabilized by the interactions of the aligned coil1B domains, the interactions between coil1A and the N-terminal portion of coil2, and the electrostatic attraction between the oppositely charged head and rod domains. Our cross-linking data indicate that, starting with a straight A11 tetramer, flexibility of linkers L1 and L12 enables 'backfolding' of both the coil1A and coil2 domains onto the tetrameric core formed by the coil1B domains. Through additional small-angle X-ray scattering experiments we show that the elongated A11 tetramers dominate in low ionic strength solutions, while there is also a significant structural flexibility especially in the terminal domains.

Erratum v

PubMed

Zobrazit více v PubMed

Kreplak, L. & Fudge, D. Biomechanical properties of intermediate filaments: From tissues to single filaments and back. PubMed DOI

Janmey, P. A., Euteneuer, U., Traub, P. & Schliwa, M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. PubMed DOI PMC

Herrmann, H., Bär, H., Kreplak, L., Strelkov, S. V. & Aebi, U. Intermediate filaments: From cell architecture to nanomechanics. PubMed DOI

Herrmann, H. & Aebi, U. Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. PubMed DOI

Chernyatina, A. A., Guzenko, D. & Strelkov, S. V. Intermediate filament structure: The bottom-up approach. PubMed DOI

Vermeire, P.-J. PubMed DOI PMC

Smith, T. A., Strelkov, S. V., Burkhard, P., Aebi, U. & Parry, D. A. Sequence comparisons of intermediate filament chains: Evidence of a unique functional/structural role for coiled-coil segment 1A and linker L1. PubMed DOI

Geisler, N., Schünemann, J., Weber, K., Häner, M. & Aebi, U. Assembly and architecture of invertebrate cytoplasmic intermediate filaments reconcile features of vertebrate cytoplasmic and nuclear lamin-type intermediate filaments. PubMed DOI

Mucke, N. PubMed DOI

Herrmann, H., Haner, M., Brettel, M., Ku, N. O. & Aebi, U. Characterization of distinct early assembly units of different intermediate filament proteins. PubMed DOI

Mucke, N. PubMed DOI PMC

Kirmse, R. PubMed DOI

Portet, S. PubMed DOI

Hevler, J. F. PubMed DOI PMC

Goldie, K. N. PubMed DOI

de Leeuw, R., Kronenberg-Tenga, R., Eibauer, M. & Medalia, O. Filament assembly of the C. elegans lamin in the absence of helix 1A. PubMed DOI PMC

Weber, M. S. PubMed DOI PMC

Eibauer, M., Weber, M. S., Turgay, Y., Sivagurunathan, S., Goldman, R. D. & Medalia, O. The molecular architecture of vimentin filaments.

Turgay, Y. PubMed DOI PMC

Mehrani, T. PubMed DOI

Steinert, P. M., Marekov, L. N. & Parry, D. A. Molecular parameters of type IV alpha-internexin and type IV-type III alpha-internexin-vimentin copolymer intermediate filaments. PubMed DOI

Parry, D. A. & Steinert, P. M. Intermediate filaments: Molecular architecture, assembly, dynamics and polymorphism. PubMed DOI

Steinert, P. M., Marekov, L. N. & Parry, D. A. Diversity of intermediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments. PubMed DOI

Herrmann, H. PubMed DOI

Kukacka, Z. PubMed DOI

Guzenko, D. & Strelkov, S. V. CCFold: Rapid and accurate prediction of coiled-coil structures and application to modelling intermediate filaments. PubMed DOI

Aziz, A. PubMed DOI PMC

Makarov, A. A. PubMed DOI PMC

Russel, D. PubMed DOI PMC

Meier, M. PubMed DOI

Lilina, A. V. PubMed DOI PMC

Mertens, H. D. T. & Svergun, D. I. Structural characterization of proteins and complexes using small-angle X-ray solution scattering. PubMed DOI

Stalmans, G. PubMed DOI PMC

Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. PubMed DOI PMC

Lilina, A. V., Chernyatina, A. A., Guzenko, D. & Strelkov, S. V. Lateral A11 type tetramerization in lamins. PubMed DOI

Aziz, A., Hess, J. F., Budamagunta, M. S., Voss, J. C. & FitzGerald, P. G. Site-directed spin labeling and electron paramagnetic resonance determination of vimentin head domain structure*. PubMed DOI PMC

Eldirany, S. A., Lomakin, I. B., Ho, M. & Bunick, C. G. Recent insight into intermediate filament structure. PubMed DOI PMC

Herrmann, H., Kreplak, L. & Aebi, U. Isolation, characterization, and in vitro assembly of intermediate filaments, Vol. 78. In PubMed

Sokolova, A. V. PubMed DOI PMC

Studier, F. W. Protein production by auto-induction in high-density shaking cultures. PubMed DOI

Weeks, S. D., Drinker, M. & Loll, P. J. Ligation independent cloning vectors for expression of SUMO fusions. PubMed DOI PMC

Polák, M. PubMed DOI

Götze, M., Iacobucci, C., Ihling, C. H. & Sinz, A. A simple cross-linking/mass spectrometry workflow for studying system-wide protein interactions. PubMed DOI

Iacobucci, C. PubMed DOI

Iacobucci, C. & Sinz, A. To be or not to be? Five guidelines to avoid misassignments in cross-linking/mass spectrometry. PubMed DOI

Abraham, M. J. DOI

Jumper, J. PubMed DOI PMC

Schiffrin, B., Radford, S. E., Brockwell, D. J. & Calabrese, A. N. PyXlinkViewer: A flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. PubMed DOI PMC

Manalastas-Cantos, K. PubMed DOI PMC

Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural Characterization of Monoclonal Antibodies and Epitope Mapping by FFAP Footprinting

. 2024 May 14 ; 96 (19) : 7386-7393. [epub] 20240502

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...