Molecular structure of soluble vimentin tetramers
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37258554
PubMed Central
PMC10232555
DOI
10.1038/s41598-023-34814-4
PII: 10.1038/s41598-023-34814-4
Knihovny.cz E-zdroje
- MeSH
- cytoskelet * metabolismus MeSH
- intermediární filamenta * metabolismus MeSH
- molekulární struktura MeSH
- sekvence aminokyselin MeSH
- vimentin metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vimentin MeSH
Intermediate filaments (IFs) are essential constituents of the metazoan cytoskeleton. A vast family of cytoplasmic IF proteins are capable of self-assembly from soluble tetrameric species into typical 10-12 nm wide filaments. The primary structure of these proteins includes the signature central 'rod' domain of ~ 300 residues which forms a dimeric α-helical coiled coil composed of three segments (coil1A, coil1B and coil2) interconnected by non-helical, flexible linkers (L1 and L12). The rod is flanked by flexible terminal head and tail domains. At present, the molecular architecture of mature IFs is only poorly known, limiting our capacity to rationalize the effect of numerous disease-related mutations found in IF proteins. Here we addressed the molecular structure of soluble vimentin tetramers which are formed by two antiparallel, staggered dimers with coil1B domains aligned (A11 tetramers). By examining a series of progressive truncations, we show that the presence of the coil1A domain is essential for the tetramer formation. In addition, we employed a novel chemical cross-linking pipeline including isotope labelling to identify intra- and interdimeric cross-links within the tetramer. We conclude that the tetramer is synergistically stabilized by the interactions of the aligned coil1B domains, the interactions between coil1A and the N-terminal portion of coil2, and the electrostatic attraction between the oppositely charged head and rod domains. Our cross-linking data indicate that, starting with a straight A11 tetramer, flexibility of linkers L1 and L12 enables 'backfolding' of both the coil1A and coil2 domains onto the tetrameric core formed by the coil1B domains. Through additional small-angle X-ray scattering experiments we show that the elongated A11 tetramers dominate in low ionic strength solutions, while there is also a significant structural flexibility especially in the terminal domains.
Department of Biochemistry Charles University 12800 Prague Czech Republic
Department of Chemistry KU Leuven 3000 Leuven Belgium
Institute of Microbiology of the Czech Academy of Sciences 14220 Prague Czech Republic
Laboratory for Biocrystallography KU Leuven 3000 Leuven Belgium
Zobrazit více v PubMed
Kreplak, L. & Fudge, D. Biomechanical properties of intermediate filaments: From tissues to single filaments and back. BioEssays News Rev. Mol. Cell. Dev. Biol29, 26–35. 10.1002/bies.20514 (2007). PubMed
Janmey, P. A., Euteneuer, U., Traub, P. & Schliwa, M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol.113, 155–160. 10.1083/jcb.113.1.155 (1991). PubMed PMC
Herrmann, H., Bär, H., Kreplak, L., Strelkov, S. V. & Aebi, U. Intermediate filaments: From cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol.8, 562. 10.1038/nrm2197 (2007). PubMed
Herrmann, H. & Aebi, U. Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu. Rev. Biochem.73, 749–789. 10.1146/annurev.biochem.73.011303.073823 (2004). PubMed
Chernyatina, A. A., Guzenko, D. & Strelkov, S. V. Intermediate filament structure: The bottom-up approach. Curr. Opin. Cell Biol.32, 65–72. 10.1016/j.ceb.2014.12.007 (2015). PubMed
Vermeire, P.-J. et al. Molecular interactions driving intermediate filament assembly. Cells10, 2457. 10.3390/cells10092457 (2021). PubMed PMC
Smith, T. A., Strelkov, S. V., Burkhard, P., Aebi, U. & Parry, D. A. Sequence comparisons of intermediate filament chains: Evidence of a unique functional/structural role for coiled-coil segment 1A and linker L1. J. Struct. Biol.137, 128–145. 10.1006/jsbi.2002.4438 (2002). PubMed
Geisler, N., Schünemann, J., Weber, K., Häner, M. & Aebi, U. Assembly and architecture of invertebrate cytoplasmic intermediate filaments reconcile features of vertebrate cytoplasmic and nuclear lamin-type intermediate filaments. J. Mol. Biol.282, 601–617. 10.1006/jmbi.1998.1995 (1998). PubMed
Mucke, N. et al. Molecular and biophysical characterization of assembly-starter units of human vimentin. J. Mol. Biol.340, 97–114. 10.1016/j.jmb.2004.04.039 (2004). PubMed
Herrmann, H., Haner, M., Brettel, M., Ku, N. O. & Aebi, U. Characterization of distinct early assembly units of different intermediate filament proteins. J. Mol. Biol.286, 1403–1420. 10.1006/jmbi.1999.2528 (1999). PubMed
Mucke, N. et al. Assembly kinetics of vimentin tetramers to unit-length filaments: A stopped-flow study. Biophys. J.114, 2408–2418. 10.1016/j.bpj.2018.04.032 (2018). PubMed PMC
Kirmse, R. et al. A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. J. Biol. Chem.282, 18563–18572. 10.1074/jbc.M701063200 (2007). PubMed
Portet, S. et al. Vimentin intermediate filament formation: In vitro measurement and mathematical modeling of the filament length distribution during assembly. Langmuir ACS J. Surf. Colloids25, 8817–8823. 10.1021/la900509r (2009). PubMed
Hevler, J. F. et al. Selective cross-linking of coinciding protein assemblies by in-gel cross-linking mass spectrometry. EMBO J.40, e106174. 10.15252/embj.2020106174 (2021). PubMed PMC
Goldie, K. N. et al. Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. J. Struct. Biol.158, 378–385. 10.1016/j.jsb.2006.12.007 (2007). PubMed
de Leeuw, R., Kronenberg-Tenga, R., Eibauer, M. & Medalia, O. Filament assembly of the C. elegans lamin in the absence of helix 1A. Nucleus (Austin, Tex.)13, 49–57. 10.1080/19491034.2022.2032917 (2022). PubMed PMC
Weber, M. S. et al. Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. Elife10, e70307. 10.7554/eLife.70307 (2021). PubMed PMC
Eibauer, M., Weber, M. S., Turgay, Y., Sivagurunathan, S., Goldman, R. D. & Medalia, O. The molecular architecture of vimentin filaments. bioRxiv 2021.2007.2015.452584. (2021). 10.1101/2021.07.15.452584%JbioRxiv
Turgay, Y. et al. The molecular architecture of lamins in somatic cells. Nature543, 261–264. 10.1038/nature21382 (2017). PubMed PMC
Mehrani, T. et al. Residues in the 1A rod domain segment and the linker L2 are required for stabilizing the A11 molecular alignment mode in keratin intermediate filaments. J. Biol. Chem.276, 2088–2097. 10.1074/jbc.M007260200 (2001). PubMed
Steinert, P. M., Marekov, L. N. & Parry, D. A. Molecular parameters of type IV alpha-internexin and type IV-type III alpha-internexin-vimentin copolymer intermediate filaments. J. Biol. Chem.274, 1657–1666. 10.1074/jbc.274.3.1657 (1999). PubMed
Parry, D. A. & Steinert, P. M. Intermediate filaments: Molecular architecture, assembly, dynamics and polymorphism. Q. Rev. Biophys.32, 99–187. 10.1017/s0033583500003516 (1999). PubMed
Steinert, P. M., Marekov, L. N. & Parry, D. A. Diversity of intermediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments. J. Biol. Chem.268, 24916–24925 (1993). PubMed
Herrmann, H. et al. Structure and assembly properties of the intermediate filament protein vimentin: The role of its head, rod and tail domains. J. Mol. Biol.264, 933–953. 10.1006/jmbi.1996.0688 (1996). PubMed
Kukacka, Z. et al. LinX: A software tool for uncommon cross-linking chemistry. J. Proteome Res.20, 2021–2027. 10.1021/acs.jproteome.0c00858 (2021). PubMed
Guzenko, D. & Strelkov, S. V. CCFold: Rapid and accurate prediction of coiled-coil structures and application to modelling intermediate filaments. Bioinformatics (Oxford, England)34, 215–222. 10.1093/bioinformatics/btx551 (2018). PubMed
Aziz, A. et al. the structure of vimentin Linker 1 and Rod 1B domains characterized by site-directed spin-labeling electron paramagnetic resonance (SDSL-EPR) and X-ray crystallography*. J. Biol. Chem.287, 28349–28361. 10.1074/jbc.M111.334011 (2012). PubMed PMC
Makarov, A. A. et al. Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. Nat. Commun.10, 3056. 10.1038/s41467-019-11063-6 (2019). PubMed PMC
Russel, D. et al. Putting the pieces together: Integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol.10, e1001244. 10.1371/journal.pbio.1001244 (2012). PubMed PMC
Meier, M. et al. Vimentin coil 1A—A molecular switch involved in the initiation of filament elongation. J. Mol. Biol.390, 245–261. 10.1016/j.jmb.2009.04.067 (2009). PubMed
Lilina, A. V. et al. Stability profile of the vimentin rod domain. Protein Sci.12, e4505. 10.1002/pro.4505 (2022). PubMed PMC
Mertens, H. D. T. & Svergun, D. I. Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J. Struct. Biol.172, 128–141. 10.1016/j.jsb.2010.06.012 (2010). PubMed
Stalmans, G. et al. Addressing the molecular mechanism of longitudinal lamin assembly using chimeric fusions. Cells9, 1633. 10.3390/cells9071633 (2020). PubMed PMC
Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res.44, W424–W429. 10.1093/nar/gkw389 (2016). PubMed PMC
Lilina, A. V., Chernyatina, A. A., Guzenko, D. & Strelkov, S. V. Lateral A11 type tetramerization in lamins. J. Struct. Biol.209, 107404. 10.1016/j.jsb.2019.10.006 (2020). PubMed
Aziz, A., Hess, J. F., Budamagunta, M. S., Voss, J. C. & FitzGerald, P. G. Site-directed spin labeling and electron paramagnetic resonance determination of vimentin head domain structure*. J. Biol. Chem.285, 15278–15285. 10.1074/jbc.M109.075598 (2010). PubMed PMC
Eldirany, S. A., Lomakin, I. B., Ho, M. & Bunick, C. G. Recent insight into intermediate filament structure. Curr. Opin. Cell Biol.68, 132–143. 10.1016/j.ceb.2020.10.001 (2021). PubMed PMC
Herrmann, H., Kreplak, L. & Aebi, U. Isolation, characterization, and in vitro assembly of intermediate filaments, Vol. 78. In Methods in Cell Biology 3–24 (Academic Press, 2004). PubMed
Sokolova, A. V. et al. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc. Natl. Acad. Sci.103, 16206 (2006). PubMed PMC
Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif.41, 207–234. 10.1016/j.pep.2005.01.016 (2005). PubMed
Weeks, S. D., Drinker, M. & Loll, P. J. Ligation independent cloning vectors for expression of SUMO fusions. Protein Expr. Purif.53, 40–50. 10.1016/j.pep.2006.12.006 (2007). PubMed PMC
Polák, M. et al. Utilization of fast photochemical oxidation of proteins and both bottom-up and top-down mass spectrometry for structural characterization of a transcription factor-dsDNA complex. Anal. Chem.10.1021/acs.analchem.1c04746 (2022). PubMed
Götze, M., Iacobucci, C., Ihling, C. H. & Sinz, A. A simple cross-linking/mass spectrometry workflow for studying system-wide protein interactions. Anal. Chem.91, 10236–10244. 10.1021/acs.analchem.9b02372 (2019). PubMed
Iacobucci, C. et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein-protein interactions. Nat. Protoc.13, 2864–2889. 10.1038/s41596-018-0068-8 (2018). PubMed
Iacobucci, C. & Sinz, A. To be or not to be? Five guidelines to avoid misassignments in cross-linking/mass spectrometry. Anal. Chem.89, 7832–7835. 10.1021/acs.analchem.7b02316 (2017). PubMed
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX1–2, 19–25. 10.1016/j.softx.2015.06.001 (2015).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589. 10.1038/s41586-021-03819-2 (2021). PubMed PMC
Schiffrin, B., Radford, S. E., Brockwell, D. J. & Calabrese, A. N. PyXlinkViewer: A flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci. Publ. Protein Soc.29, 1851–1857. 10.1002/pro.3902 (2020). PubMed PMC
Manalastas-Cantos, K. et al. ATSAS 3.0: Expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr.54, 343–355. 10.1107/s1600576720013412 (2021). PubMed PMC
Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr.28, 768–773. 10.1107/S0021889895007047 (1995).
Structural Characterization of Monoclonal Antibodies and Epitope Mapping by FFAP Footprinting