Molecular structure of soluble vimentin tetramers

. 2023 May 31 ; 13 (1) : 8841. [epub] 20230531

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37258554
Odkazy

PubMed 37258554
PubMed Central PMC10232555
DOI 10.1038/s41598-023-34814-4
PII: 10.1038/s41598-023-34814-4
Knihovny.cz E-zdroje

Intermediate filaments (IFs) are essential constituents of the metazoan cytoskeleton. A vast family of cytoplasmic IF proteins are capable of self-assembly from soluble tetrameric species into typical 10-12 nm wide filaments. The primary structure of these proteins includes the signature central 'rod' domain of ~ 300 residues which forms a dimeric α-helical coiled coil composed of three segments (coil1A, coil1B and coil2) interconnected by non-helical, flexible linkers (L1 and L12). The rod is flanked by flexible terminal head and tail domains. At present, the molecular architecture of mature IFs is only poorly known, limiting our capacity to rationalize the effect of numerous disease-related mutations found in IF proteins. Here we addressed the molecular structure of soluble vimentin tetramers which are formed by two antiparallel, staggered dimers with coil1B domains aligned (A11 tetramers). By examining a series of progressive truncations, we show that the presence of the coil1A domain is essential for the tetramer formation. In addition, we employed a novel chemical cross-linking pipeline including isotope labelling to identify intra- and interdimeric cross-links within the tetramer. We conclude that the tetramer is synergistically stabilized by the interactions of the aligned coil1B domains, the interactions between coil1A and the N-terminal portion of coil2, and the electrostatic attraction between the oppositely charged head and rod domains. Our cross-linking data indicate that, starting with a straight A11 tetramer, flexibility of linkers L1 and L12 enables 'backfolding' of both the coil1A and coil2 domains onto the tetrameric core formed by the coil1B domains. Through additional small-angle X-ray scattering experiments we show that the elongated A11 tetramers dominate in low ionic strength solutions, while there is also a significant structural flexibility especially in the terminal domains.

Erratum v

PubMed

Zobrazit více v PubMed

Kreplak, L. & Fudge, D. Biomechanical properties of intermediate filaments: From tissues to single filaments and back. BioEssays News Rev. Mol. Cell. Dev. Biol29, 26–35. 10.1002/bies.20514 (2007). PubMed

Janmey, P. A., Euteneuer, U., Traub, P. & Schliwa, M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol.113, 155–160. 10.1083/jcb.113.1.155 (1991). PubMed PMC

Herrmann, H., Bär, H., Kreplak, L., Strelkov, S. V. & Aebi, U. Intermediate filaments: From cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol.8, 562. 10.1038/nrm2197 (2007). PubMed

Herrmann, H. & Aebi, U. Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu. Rev. Biochem.73, 749–789. 10.1146/annurev.biochem.73.011303.073823 (2004). PubMed

Chernyatina, A. A., Guzenko, D. & Strelkov, S. V. Intermediate filament structure: The bottom-up approach. Curr. Opin. Cell Biol.32, 65–72. 10.1016/j.ceb.2014.12.007 (2015). PubMed

Vermeire, P.-J. et al. Molecular interactions driving intermediate filament assembly. Cells10, 2457. 10.3390/cells10092457 (2021). PubMed PMC

Smith, T. A., Strelkov, S. V., Burkhard, P., Aebi, U. & Parry, D. A. Sequence comparisons of intermediate filament chains: Evidence of a unique functional/structural role for coiled-coil segment 1A and linker L1. J. Struct. Biol.137, 128–145. 10.1006/jsbi.2002.4438 (2002). PubMed

Geisler, N., Schünemann, J., Weber, K., Häner, M. & Aebi, U. Assembly and architecture of invertebrate cytoplasmic intermediate filaments reconcile features of vertebrate cytoplasmic and nuclear lamin-type intermediate filaments. J. Mol. Biol.282, 601–617. 10.1006/jmbi.1998.1995 (1998). PubMed

Mucke, N. et al. Molecular and biophysical characterization of assembly-starter units of human vimentin. J. Mol. Biol.340, 97–114. 10.1016/j.jmb.2004.04.039 (2004). PubMed

Herrmann, H., Haner, M., Brettel, M., Ku, N. O. & Aebi, U. Characterization of distinct early assembly units of different intermediate filament proteins. J. Mol. Biol.286, 1403–1420. 10.1006/jmbi.1999.2528 (1999). PubMed

Mucke, N. et al. Assembly kinetics of vimentin tetramers to unit-length filaments: A stopped-flow study. Biophys. J.114, 2408–2418. 10.1016/j.bpj.2018.04.032 (2018). PubMed PMC

Kirmse, R. et al. A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. J. Biol. Chem.282, 18563–18572. 10.1074/jbc.M701063200 (2007). PubMed

Portet, S. et al. Vimentin intermediate filament formation: In vitro measurement and mathematical modeling of the filament length distribution during assembly. Langmuir ACS J. Surf. Colloids25, 8817–8823. 10.1021/la900509r (2009). PubMed

Hevler, J. F. et al. Selective cross-linking of coinciding protein assemblies by in-gel cross-linking mass spectrometry. EMBO J.40, e106174. 10.15252/embj.2020106174 (2021). PubMed PMC

Goldie, K. N. et al. Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. J. Struct. Biol.158, 378–385. 10.1016/j.jsb.2006.12.007 (2007). PubMed

de Leeuw, R., Kronenberg-Tenga, R., Eibauer, M. & Medalia, O. Filament assembly of the C. elegans lamin in the absence of helix 1A. Nucleus (Austin, Tex.)13, 49–57. 10.1080/19491034.2022.2032917 (2022). PubMed PMC

Weber, M. S. et al. Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. Elife10, e70307. 10.7554/eLife.70307 (2021). PubMed PMC

Eibauer, M., Weber, M. S., Turgay, Y., Sivagurunathan, S., Goldman, R. D. & Medalia, O. The molecular architecture of vimentin filaments. bioRxiv 2021.2007.2015.452584. (2021). 10.1101/2021.07.15.452584%JbioRxiv

Turgay, Y. et al. The molecular architecture of lamins in somatic cells. Nature543, 261–264. 10.1038/nature21382 (2017). PubMed PMC

Mehrani, T. et al. Residues in the 1A rod domain segment and the linker L2 are required for stabilizing the A11 molecular alignment mode in keratin intermediate filaments. J. Biol. Chem.276, 2088–2097. 10.1074/jbc.M007260200 (2001). PubMed

Steinert, P. M., Marekov, L. N. & Parry, D. A. Molecular parameters of type IV alpha-internexin and type IV-type III alpha-internexin-vimentin copolymer intermediate filaments. J. Biol. Chem.274, 1657–1666. 10.1074/jbc.274.3.1657 (1999). PubMed

Parry, D. A. & Steinert, P. M. Intermediate filaments: Molecular architecture, assembly, dynamics and polymorphism. Q. Rev. Biophys.32, 99–187. 10.1017/s0033583500003516 (1999). PubMed

Steinert, P. M., Marekov, L. N. & Parry, D. A. Diversity of intermediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments. J. Biol. Chem.268, 24916–24925 (1993). PubMed

Herrmann, H. et al. Structure and assembly properties of the intermediate filament protein vimentin: The role of its head, rod and tail domains. J. Mol. Biol.264, 933–953. 10.1006/jmbi.1996.0688 (1996). PubMed

Kukacka, Z. et al. LinX: A software tool for uncommon cross-linking chemistry. J. Proteome Res.20, 2021–2027. 10.1021/acs.jproteome.0c00858 (2021). PubMed

Guzenko, D. & Strelkov, S. V. CCFold: Rapid and accurate prediction of coiled-coil structures and application to modelling intermediate filaments. Bioinformatics (Oxford, England)34, 215–222. 10.1093/bioinformatics/btx551 (2018). PubMed

Aziz, A. et al. the structure of vimentin Linker 1 and Rod 1B domains characterized by site-directed spin-labeling electron paramagnetic resonance (SDSL-EPR) and X-ray crystallography*. J. Biol. Chem.287, 28349–28361. 10.1074/jbc.M111.334011 (2012). PubMed PMC

Makarov, A. A. et al. Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. Nat. Commun.10, 3056. 10.1038/s41467-019-11063-6 (2019). PubMed PMC

Russel, D. et al. Putting the pieces together: Integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol.10, e1001244. 10.1371/journal.pbio.1001244 (2012). PubMed PMC

Meier, M. et al. Vimentin coil 1A—A molecular switch involved in the initiation of filament elongation. J. Mol. Biol.390, 245–261. 10.1016/j.jmb.2009.04.067 (2009). PubMed

Lilina, A. V. et al. Stability profile of the vimentin rod domain. Protein Sci.12, e4505. 10.1002/pro.4505 (2022). PubMed PMC

Mertens, H. D. T. & Svergun, D. I. Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J. Struct. Biol.172, 128–141. 10.1016/j.jsb.2010.06.012 (2010). PubMed

Stalmans, G. et al. Addressing the molecular mechanism of longitudinal lamin assembly using chimeric fusions. Cells9, 1633. 10.3390/cells9071633 (2020). PubMed PMC

Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res.44, W424–W429. 10.1093/nar/gkw389 (2016). PubMed PMC

Lilina, A. V., Chernyatina, A. A., Guzenko, D. & Strelkov, S. V. Lateral A11 type tetramerization in lamins. J. Struct. Biol.209, 107404. 10.1016/j.jsb.2019.10.006 (2020). PubMed

Aziz, A., Hess, J. F., Budamagunta, M. S., Voss, J. C. & FitzGerald, P. G. Site-directed spin labeling and electron paramagnetic resonance determination of vimentin head domain structure*. J. Biol. Chem.285, 15278–15285. 10.1074/jbc.M109.075598 (2010). PubMed PMC

Eldirany, S. A., Lomakin, I. B., Ho, M. & Bunick, C. G. Recent insight into intermediate filament structure. Curr. Opin. Cell Biol.68, 132–143. 10.1016/j.ceb.2020.10.001 (2021). PubMed PMC

Herrmann, H., Kreplak, L. & Aebi, U. Isolation, characterization, and in vitro assembly of intermediate filaments, Vol. 78. In Methods in Cell Biology 3–24 (Academic Press, 2004). PubMed

Sokolova, A. V. et al. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc. Natl. Acad. Sci.103, 16206 (2006). PubMed PMC

Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif.41, 207–234. 10.1016/j.pep.2005.01.016 (2005). PubMed

Weeks, S. D., Drinker, M. & Loll, P. J. Ligation independent cloning vectors for expression of SUMO fusions. Protein Expr. Purif.53, 40–50. 10.1016/j.pep.2006.12.006 (2007). PubMed PMC

Polák, M. et al. Utilization of fast photochemical oxidation of proteins and both bottom-up and top-down mass spectrometry for structural characterization of a transcription factor-dsDNA complex. Anal. Chem.10.1021/acs.analchem.1c04746 (2022). PubMed

Götze, M., Iacobucci, C., Ihling, C. H. & Sinz, A. A simple cross-linking/mass spectrometry workflow for studying system-wide protein interactions. Anal. Chem.91, 10236–10244. 10.1021/acs.analchem.9b02372 (2019). PubMed

Iacobucci, C. et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein-protein interactions. Nat. Protoc.13, 2864–2889. 10.1038/s41596-018-0068-8 (2018). PubMed

Iacobucci, C. & Sinz, A. To be or not to be? Five guidelines to avoid misassignments in cross-linking/mass spectrometry. Anal. Chem.89, 7832–7835. 10.1021/acs.analchem.7b02316 (2017). PubMed

Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX1–2, 19–25. 10.1016/j.softx.2015.06.001 (2015).

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589. 10.1038/s41586-021-03819-2 (2021). PubMed PMC

Schiffrin, B., Radford, S. E., Brockwell, D. J. & Calabrese, A. N. PyXlinkViewer: A flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci. Publ. Protein Soc.29, 1851–1857. 10.1002/pro.3902 (2020). PubMed PMC

Manalastas-Cantos, K. et al. ATSAS 3.0: Expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr.54, 343–355. 10.1107/s1600576720013412 (2021). PubMed PMC

Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr.28, 768–773. 10.1107/S0021889895007047 (1995).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural Characterization of Monoclonal Antibodies and Epitope Mapping by FFAP Footprinting

. 2024 May 14 ; 96 (19) : 7386-7393. [epub] 20240502

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...