Molecular Interactions Driving Intermediate Filament Assembly

. 2021 Sep 17 ; 10 (9) : . [epub] 20210917

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572105

Grantová podpora
731077 Horizon 2020

Given the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision. However, the molecular interactions driving later stages of the filament assembly are still not fully understood. For cytoplasmic IFs, much of the currently available insight is due to chemical cross-linking experiments that date back to the 1990s. This technique has since been radically improved, and several groups have utilized it recently to obtain data on lamin filament assembly. Here, we will summarize these findings and reflect on the remaining open questions and challenges of IF structure. We argue that, in addition to X-ray crystallography, chemical cross-linking and cryoelectron microscopy are the techniques that should enable major new advances in the field in the near future.

Zobrazit více v PubMed

Herrmann H., Bär H., Kreplak L., Strelkov S.V., Aebi U. Intermediate filaments: From cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 2007;8:562. doi: 10.1038/nrm2197. PubMed DOI

Qin Z., Kreplak L., Buehler M.J. Nanomechanical properties of vimentin intermediate filament dimers. Nanotechnology. 2009;20:425101. doi: 10.1088/0957-4484/20/42/425101. PubMed DOI

Szeverenyi I., Cassidy A.J., Chung C.W., Lee B.T., Common J.E., Ogg S.C., Chen H., Sim S.Y., Goh W.L., Ng K.W., et al. The Human Intermediate Filament Database: Comprehensive information on a gene family involved in many human diseases. Hum. Mutat. 2008;29:351–360. doi: 10.1002/humu.20652. PubMed DOI

Guzenko D., Chernyatina A.A., Strelkov S.V. Crystallographic Studies of Intermediate Filament Proteins. Subcell Biochem. 2017;82:151–170. doi: 10.1007/978-3-319-49674-0_6. PubMed DOI

Turgay Y., Eibauer M., Goldman A.E., Shimi T., Khayat M., Ben-Harush K., Dubrovsky-Gaupp A., Sapra K.T., Goldman R.D., Medalia O. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–264. doi: 10.1038/nature21382. PubMed DOI PMC

Aebi U., Cohn J., Buhle L., Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986;323:560–564. doi: 10.1038/323560a0. PubMed DOI

Chernyatina A.A., Guzenko D., Strelkov S.V. Intermediate filament structure: The bottom-up approach. Curr. Opin. Cell Biol. 2015;32:65–72. doi: 10.1016/j.ceb.2014.12.007. PubMed DOI

Eldirany S.A., Lomakin I.B., Ho M., Bunick C.G. Recent insight into intermediate filament structure. Curr. Opin. Cell Biol. 2020;68:132–143. doi: 10.1016/j.ceb.2020.10.001. PubMed DOI PMC

Wilson A.K., Coulombe P.A., Fuchs E. The roles of K5 and K14 head, tail, and R/K L L E G E domains in keratin filament assembly in vitro. J. Cell Biol. 1992;119:401–414. doi: 10.1083/jcb.119.2.401. PubMed DOI PMC

Mucke N., Wedig T., Burer A., Marekov L.N., Steinert P.M., Langowski J., Aebi U., Herrmann H. Molecular and biophysical characterization of assembly-starter units of human vimentin. J. Mol. Biol. 2004;340:97–114. doi: 10.1016/j.jmb.2004.04.039. PubMed DOI

Herrmann H., Haner M., Brettel M., Muller S.A., Goldie K.N., Fedtke B., Lustig A., Franke W.W., Aebi U. Structure and assembly properties of the intermediate filament protein vimentin: The role of its head, rod and tail domains. J. Mol. Biol. 1996;264:933–953. doi: 10.1006/jmbi.1996.0688. PubMed DOI

Herrmann H., Haner M., Brettel M., Ku N.O., Aebi U. Characterization of distinct early assembly units of different intermediate filament proteins. J. Mol. Biol. 1999;286:1403–1420. doi: 10.1006/jmbi.1999.2528. PubMed DOI

Mucke N., Kammerer L., Winheim S., Kirmse R., Krieger J., Mildenberger M., Bassler J., Hurt E., Goldmann W.H., Aebi U., et al. Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophys. J. 2018;114:2408–2418. doi: 10.1016/j.bpj.2018.04.032. PubMed DOI PMC

Premchandar A., Mücke N., Poznański J., Wedig T., Kaus-Drobek M., Herrmann H., Dadlez M. Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange. J. Biol. Chem. 2016;291:24931–24950. doi: 10.1074/jbc.M116.748145. PubMed DOI PMC

Kirmse R., Portet S., Mücke N., Aebi U., Herrmann H., Langowski J. A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. J. Biol. Chem. 2007;282:18563–18572. doi: 10.1074/jbc.M701063200. PubMed DOI

Portet S., Mücke N., Kirmse R., Langowski J., Beil M., Herrmann H. Vimentin intermediate filament formation: In vitro measurement and mathematical modeling of the filament length distribution during assembly. Langmuir ACS J. Surf. Colloids. 2009;25:8817–8823. doi: 10.1021/la900509r. PubMed DOI

Sasse B., Aebi U., Stuurman N. A tailless Drosophila lamin Dm0 fragment reveals lateral associations of dimers. J. Str. Biol. 1998;123:56–66. doi: 10.1006/jsbi.1998.4006. PubMed DOI

Heitlinger E., Peter M., Häner M., Lustig A., Aebi U., Nigg E.A. Expression of chicken lamin B2 in Escherichia coli: Characterization of its structure, assembly, and molecular interactions. J. Cell Biol. 1991;113:485–495. doi: 10.1083/jcb.113.3.485. PubMed DOI PMC

Foeger N., Wiesel N., Lotsch D., Mücke N., Kreplak L., Aebi U., Gruenbaum Y., Herrmann H. Solubility properties and specific assembly pathways of the B-type lamin from Caenorhabditis elegans. J. Str. Biol. 2006;155:340–350. doi: 10.1016/j.jsb.2006.03.026. PubMed DOI

Herrmann H., Aebi U. Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration Into Functionally Distinct Intracellular Scaffolds. Ann. Rev. Biochem. 2004;73:749–789. doi: 10.1146/annurev.biochem.73.011303.073823. PubMed DOI

Etienne-Manneville S. Cytoplasmic Intermediate Filaments in Cell Biology. Ann. Rev. Cell Dev. Biol. 2018;34:1–28. doi: 10.1146/annurev-cellbio-100617-062534. PubMed DOI

Snider N.T., Omary M.B. Post-translational modifications of intermediate filament proteins: Mechanisms and functions. Nat. Rev. Mol. Cell Biol. 2014;15:163–177. doi: 10.1038/nrm3753. PubMed DOI PMC

Nishimura Y., Kasahara K., Inagaki M. Intermediate filaments and IF-associated proteins: From cell architecture to cell proliferation. Proc. Jpn. Acad. Ser. B Phy. Biol. Sci. 2019;95:479–493. doi: 10.2183/pjab.95.034. PubMed DOI PMC

Eriksson J.E., He T., Trejo-Skalli A.V., Härmälä-Braskén A.S., Hellman J., Chou Y.H., Goldman R.D. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J. Cell Sci. 2004;117:919–932. doi: 10.1242/jcs.00906. PubMed DOI

Gruenbaum Y., Aebi U. Intermediate filaments: A dynamic network that controls cell mechanics. F1000prime Rep. 2014;6:54. doi: 10.12703/P6-54. PubMed DOI PMC

Chernyatina A.A., Hess J.F., Guzenko D., Voss J.C., Strelkov S.V. How to Study Intermediate Filaments in Atomic Detail. Methods Enzymol. 2016;568:3–33. doi: 10.1016/bs.mie.2015.09.024. PubMed DOI

Strelkov S.V., Herrmann H., Geisler N., Lustig A., Ivaninskii S., Zimbelmann R., Burkhard P., Aebi U. Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J. Mol. Biol. 2001;306:773–781. doi: 10.1006/jmbi.2001.4442. PubMed DOI

Geisler N., Schünemann J., Weber K., Häner M., Aebi U. Assembly and architecture of invertebrate cytoplasmic intermediate filaments reconcile features of vertebrate cytoplasmic and nuclear lamin-type intermediate filaments. J. Mol. Biol. 1998;282:601–617. doi: 10.1006/jmbi.1998.1995. PubMed DOI

North A.C., Steinert P.M., Parry D.A. Coiled-coil stutter and link segments in keratin and other intermediate filament molecules: A computer modeling study. Proteins. 1994;20:174–184. doi: 10.1002/prot.340200207. PubMed DOI

Stalmans G., Lilina A.V., Vermeire P.J., Fiala J., Novák P., Strelkov S.V. Addressing the Molecular Mechanism of Longitudinal Lamin Assembly Using Chimeric Fusions. Cells. 2020;9:1633. doi: 10.3390/cells9071633. PubMed DOI PMC

Nicolet S., Herrmann H., Aebi U., Strelkov S.V. Atomic structure of vimentin coil 2. J. Str. Biol. 2010;170:369–376. doi: 10.1016/j.jsb.2010.02.012. PubMed DOI

Chernyatina A.A., Nicolet S., Aebi U., Herrmann H., Strelkov S.V. Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly. Proc. Natl. Acad. Sci. USA. 2012;109:13620–13625. doi: 10.1073/pnas.1206836109. PubMed DOI PMC

Korkmaz E.N., Taylor K.C., Andreas M.P., Ajay G., Heinze N.T., Cui Q., Rayment I. A composite approach towards a complete model of the myosin rod. Proteins. 2016;84:172–189. doi: 10.1002/prot.24964. PubMed DOI PMC

Guzenko D., Strelkov S.V. CCFold: Rapid and accurate prediction of coiled-coil structures and application to modelling intermediate filaments. Bioinformatics. 2018;34:215–222. doi: 10.1093/bioinformatics/btx551. PubMed DOI

Ruan J., Xu C., Bian C., Lam R., Wang J.P., Kania J., Min J., Zang J. Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1. FEBS Lett. 2012;586:314–318. doi: 10.1016/j.febslet.2012.01.007. PubMed DOI

Gohara R., Tang D., Inada H., Inagaki M., Takasaki Y., Ando S. Phosphorylation of vimentin head domain inhibits interaction with the carboxyl-terminal end of α-helical rod domain studied by surface plasmon resonance measurements. FEBS Lett. 2001;489:182–186. doi: 10.1016/S0014-5793(01)02108-1. PubMed DOI

Pittenger J.T., Hess J.F., Budamagunta M.S., Voss J.C., Fitzgerald P.G. Identification of phosphorylation-induced changes in vimentin intermediate filaments by site-directed spin labeling and electron paramagnetic resonance. Biochemistry. 2008;47:10863–10870. doi: 10.1021/bi801137m. PubMed DOI PMC

Steinert P.M., Mack J.W., Korge B.P., Gan S.-Q., Haynes S.R., Steven A.C. Glycine loops in proteins: Their occurence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int. J. Biol. Macromol. 1991;13:130–139. doi: 10.1016/0141-8130(91)90037-U. PubMed DOI

Badowski C., Sim A.Y.L., Verma C., Szeverényi I., Natesavelalar C., Terron-Kwiatkowski A., Harper J., O′Toole E.A., Lane E.B. Modeling the Structure of Keratin 1 and 10 Terminal Domains and their Misassembly in Keratoderma. J. Investig. Dermatol. 2017;137:1914–1923. doi: 10.1016/j.jid.2017.03.038. PubMed DOI

Bousquet O., Ma L., Yamada S., Gu C., Idei T., Takahashi K., Wirtz D., Coulombe P.A. The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro. J. Cell Biol. 2001;155:747–754. doi: 10.1083/jcb.200104063. PubMed DOI PMC

Hess J.F., Budamagunta M.S., Shipman R.L., FitzGerald P.G., Voss J.C. Characterization of the Linker 2 Region in Human Vimentin Using Site-Directed Spin Labeling and Electron Paramagnetic Resonance. Biochemistry. 2006;45:11737–11743. doi: 10.1021/bi060741y. PubMed DOI PMC

Hess J.F., Voss J.C., FitzGerald P.G. Real-time Observation of Coiled-coil Domains and Subunit Assembly in Intermediate Filaments. J. Biol. Chem. 2002;277:35516–35522. doi: 10.1074/jbc.M206500200. PubMed DOI PMC

Hess J.F., Budamagunta M.S., FitzGerald P.G., Voss J.C. Characterization of Structural Changes in Vimentin Bearing an Epidermolysis Bullosa Simplex-like Mutation Using Site-directed Spin Labeling and Electron Paramagnetic Resonance. J. Biol. Chem. 2005;280:2141–2146. doi: 10.1074/jbc.M412254200. PubMed DOI PMC

Aziz A., Hess J.F., Budamagunta M.S., Voss J.C., FitzGerald P.G. Site-directed Spin Labeling and Electron Paramagnetic Resonance Determination of Vimentin Head Domain Structure. J. Biol. Chem. 2010;285:15278–15285. doi: 10.1074/jbc.M109.075598. PubMed DOI PMC

Aziz A., Hess J.F., Budamagunta M.S., FitzGerald P.G., Voss J.C. Head and Rod 1 Interactions in Vimentin. J. Biol. Chem. 2009;284:7330–7338. doi: 10.1074/jbc.M809029200. PubMed DOI PMC

Hess J.F., Budamagunta M.S., Aziz A., FitzGerald P.G., Voss J.C. Electron paramagnetic resonance analysis of the vimentin tail domain reveals points of order in a largely disordered region and conformational adaptation upon filament assembly. Protein Sci. Publ. Protein Soc. 2013;22:47–55. doi: 10.1002/pro.2182. PubMed DOI PMC

Hess J.F., Budamagunta M.S., Voss J.C., FitzGerald P.G. Structural Characterization of Human Vimentin Rod 1 and the Sequencing of Assembly Steps in Intermediate Filament Formation in Vitro Using Site-directed Spin Labeling and Electron Paramagnetic Resonance. J. Biol. Chem. 2004;279:44841–44846. doi: 10.1074/jbc.M406257200. PubMed DOI PMC

Budamagunta M.S., Hess J.F., Fitzgerald P.G., Voss J.C. Describing the structure and assembly of protein filaments by EPR spectroscopy of spin-labeled side chains. Cell Biochem. Biophys. 2007;48:45–53. doi: 10.1007/s12013-007-0035-4. PubMed DOI

Aziz A., Hess J.F., Budamagunta M.S., Voss J.C., Kuzin A.P., Huang Y.J., Xiao R., Montelione G.T., FitzGerald P.G., Hunt J.F. The Structure of Vimentin Linker 1 and Rod 1B Domains Characterized by Site-directed Spin-labeling Electron Paramagnetic Resonance (SDSL-EPR) and X-ray Crystallography. J. Biol. Chem. 2012;287:28349–28361. doi: 10.1074/jbc.M111.334011. PubMed DOI PMC

Steinert P.M., Marekov L.N., Parry D.A. Diversity of intermediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments. J. Biol. Chem. 1993;268:24916–24925. doi: 10.1016/S0021-9258(19)74552-9. PubMed DOI

Eldirany S.A., Ho M., Hinbest A.J., Lomakin I.B., Bunick C.G. Human keratin 1/10-1B tetramer structures reveal a knob-pocket mechanism in intermediate filament assembly. EMBO J. 2019;38:e100741. doi: 10.15252/embj.2018100741. PubMed DOI PMC

Kim B., Kim S., Jin M.S. Crystal structure of the human glial fibrillary acidic protein 1B domain. Biochem. Biophys. Res. Commun. 2018;503:2899–2905. doi: 10.1016/j.bbrc.2018.08.066. PubMed DOI

Ahn J., Jo I., Kang S.-m., Hong S., Kim S., Jeong S., Kim Y.-H., Park B.-J., Ha N.-C. Structural basis for lamin assembly at the molecular level. Nat. Commun. 2019;10:3757. doi: 10.1038/s41467-019-11684-x. PubMed DOI PMC

Lilina A.V., Chernyatina A.A., Guzenko D., Strelkov S.V. Lateral A11 type tetramerization in lamins. J. Str. Biol. 2020;209:107404. doi: 10.1016/j.jsb.2019.10.006. PubMed DOI

Bernot K.M., Lee C.H., Coulombe P.A. A small surface hydrophobic stripe in the coiled-coil domain of type I keratins mediates tetramer stability. J Cell Biol. 2005;168:965–974. doi: 10.1083/jcb.200408116. PubMed DOI PMC

Parry D.A., Steinert P.M. Intermediate filaments: Molecular architecture, assembly, dynamics and polymorphism. Q Rev. Biophys. 1999;32:99–187. doi: 10.1017/S0033583500003516. PubMed DOI

Makarov A.A., Zou J., Houston D.R., Spanos C., Solovyova A.S., Cardenal-Peralta C., Rappsilber J., Schirmer E.C. Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. Nat. Commun. 2019;10:3056. doi: 10.1038/s41467-019-11063-6. PubMed DOI PMC

Herrmann H., Kreplak L., Aebi U. Methods in Cell Biology. Volume 78. Academic Press; Cambridge, MA, USA: 2004. Isolation, Characterization, and In Vitro Assembly of Intermediate Filaments; pp. 3–24. PubMed

Herrmann H., Wedig T., Porter R.M., Lane E.B., Aebi U. Characterization of early assembly intermediates of recombinant human keratins. J. Str. Biol. 2002;137:82–96. doi: 10.1006/jsbi.2002.4466. PubMed DOI

Sokolova A.V., Kreplak L., Wedig T., Mücke N., Svergun D.I., Herrmann H., Aebi U., Strelkov S.V. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc. Nat. Acad. Sci. USA. 2006;103:16206. doi: 10.1073/pnas.0603629103. PubMed DOI PMC

Weber M.S., Eibauer M., Sivagurunathan S., Magin T.M., Goldman R.D., Medalia O. Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. Elife. 2021;10:e70307. doi: 10.7554/eLife.70307. PubMed DOI PMC

Sinz A. Divide and conquer: Cleavable cross-linkers to study protein conformation and protein-protein interactions. Anal. Bioanal. Chem. 2017;409:33–44. doi: 10.1007/s00216-016-9941-x. PubMed DOI

Iacobucci C., Piotrowski C., Aebersold R., Amaral B.C., Andrews P., Bernfur K., Borchers C., Brodie N.I., Bruce J.E., Cao Y., et al. First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study. Anal. Chem. 2019;91:6953–6961. doi: 10.1021/acs.analchem.9b00658. PubMed DOI PMC

Pan D., Brockmeyer A., Mueller F., Musacchio A., Bange T. Simplified Protocol for Cross-linking Mass Spectrometry Using the MS-Cleavable Cross-linker DSBU with Efficient Cross-link Identification. Anal. Chem. 2018;90:10990–10999. doi: 10.1021/acs.analchem.8b02593. PubMed DOI

Müller M.Q., Dreiocker F., Ihling C.H., Schäfer M., Sinz A. Cleavable cross-linker for protein structure analysis: Reliable identification of cross-linking products by tandem MS. Anal. Chem. 2010;82:6958–6968. doi: 10.1021/ac101241t. PubMed DOI

Rozbesky D., Rosulek M., Kukacka Z., Chmelik J., Man P., Novak P. Impact of Chemical Cross-Linking on Protein Structure and Function. Anal. Chem. 2018;90:1104–1113. doi: 10.1021/acs.analchem.7b02863. PubMed DOI

Han K.K., Tetaert D., Debuire B., Dautrevaux M., Biserte G. (Sequential Edman degredation) Biochimie. 1977;59:557–576. doi: 10.1016/S0300-9084(77)80166-1. PubMed DOI

Sinz A. Cross-Linking/Mass Spectrometry for Studying Protein Structures and Protein-Protein Interactions: Where Are We Now and Where Should We Go from Here? Angew. Chem. Int. Ed. Engl. 2018;57:6390–6396. doi: 10.1002/anie.201709559. PubMed DOI

Iacobucci C., Gotze M., Ihling C.H., Piotrowski C., Arlt C., Schafer M., Hage C., Schmidt R., Sinz A. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein-protein interactions. Nat. Protoc. 2018;13:2864–2889. doi: 10.1038/s41596-018-0068-8. PubMed DOI

Chavez J.D., Mohr J.P., Mathay M., Zhong X., Keller A., Bruce J.E. Systems structural biology measurements by in vivo cross-linking with mass spectrometry. Nat. Protoc. 2019;14:2318–2343. doi: 10.1038/s41596-019-0181-3. PubMed DOI PMC

Parry D.A., Marekov L.N., Steinert P.M. Subfilamentous protofibril structures in fibrous proteins: Cross-linking evidence for protofibrils in intermediate filaments. J. Biol. Chem. 2001;276:39253–39258. doi: 10.1074/jbc.M104604200. PubMed DOI

Steinert P.M., Marekov L.N., Parry D.A. Conservation of the structure of keratin intermediate filaments: Molecular mechanism by which different keratin molecules integrate into preexisting keratin intermediate filaments during differentiation. Biochemistry. 1993;32:10046–10056. doi: 10.1021/bi00089a021. PubMed DOI

Steinert P.M., Marekov L.N., Fraser R.D., Parry D.A. Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J. Mol. Biol. 1993;230:436–452. doi: 10.1006/jmbi.1993.1161. PubMed DOI

Steinert P.M., Marekov L.N., Parry D.A. Molecular parameters of type IV alpha-internexin and type IV-type III alpha-internexin-vimentin copolymer intermediate filaments. J. Biol. Chem. 1999;274:1657–1666. doi: 10.1074/jbc.274.3.1657. PubMed DOI

Steinert P.M., Roop D.R. Molecular and cellular biology of intermediate filaments. Ann. Rev. Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. PubMed DOI

Norlen L., Masich S., Goldie K.N., Hoenger A. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography. Exp. Cell Res. 2007;313:2217–2227. doi: 10.1016/j.yexcr.2007.03.037. PubMed DOI

Strelkov S.V., Herrmann H., Aebi U. Molecular architecture of intermediate filaments. BioEssays News Rev. Mol. Cell. Dev. Biol. 2003;25:243–251. doi: 10.1002/bies.10246. PubMed DOI

Kapinos L.E., Schumacher J., Mücke N., Machaidze G., Burkhard P., Aebi U., Strelkov S.V., Herrmann H. Characterization of the head-to-tail overlap complexes formed by human lamin A, B1 and B2 “half-minilamin” dimers. J. Mol. Biol. 2010;396:719–731. doi: 10.1016/j.jmb.2009.12.001. PubMed DOI

Heitlinger E., Peter M., Lustig A., Villiger W., Nigg E.A., Aebi U. The role of the head and tail domain in lamin structure and assembly: Analysis of bacterially expressed chicken lamin A and truncated B2 lamins. J. Str. Biol. 1992;108:74–89. doi: 10.1016/1047-8477(92)90009-Y. PubMed DOI

Herrmann H., Aebi U. Intermediate Filaments: Structure and Assembly. Cold Spring Harb. Perspect. Biol. 2016;8:a018242. doi: 10.1101/cshperspect.a018242. PubMed DOI PMC

Lee C.H., Kim M.S., Chung B.M., Leahy D.J., Coulombe P.A. Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat. Struct. Mol. Biol. 2012;19:707–715. doi: 10.1038/nsmb.2330. PubMed DOI PMC

Lee C.-H., Kim M.-S., Li S., Leahy D.J., Coulombe P.A. Structure-Function Analyses of a Keratin Heterotypic Complex Identify Specific Keratin Regions Involved in Intermediate Filament Assembly. Structure. 2020;28:355–362.e354. doi: 10.1016/j.str.2020.01.002. PubMed DOI PMC

Lomakin I.B., Hinbest A.J., Ho M., Eldirany S.A., Bunick C.G. Crystal Structure of Keratin 1/10(C401A) 2B Heterodimer Demonstrates a Proclivity for the C-Terminus of Helix 2B to Form Higher Order Molecular Contacts. Yale J. Biol. Med. 2020;93:3–17. PubMed PMC

Bunick C.G., Milstone L.M. The X-Ray Crystal Structure of the Keratin 1-Keratin 10 Helix 2B Heterodimer Reveals Molecular Surface Properties and Biochemical Insights into Human Skin Disease. J. Investig. Dermatol. 2017;137:142–150. doi: 10.1016/j.jid.2016.08.018. PubMed DOI PMC

Russel D., Lasker K., Webb B., Velázquez-Muriel J., Tjioe E., Schneidman-Duhovny D., Peterson B., Sali A. Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies. PLoS Biol. 2012;10:e1001244. doi: 10.1371/journal.pbio.1001244. PubMed DOI PMC

Toivola D.M., Boor P., Alam C., Strnad P. Keratins in health and disease. Curr. Opin. Cell Biol. 2015;32:73–81. doi: 10.1016/j.ceb.2014.12.008. PubMed DOI

Klymkowsky M.W. Filaments and phenotypes: Cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Research. 2019;8 doi: 10.12688/f1000research.19950.1. PubMed DOI PMC

Fuchs E. Intermediate filaments and disease: Mutations that cripple cell strength. J. Cell Biol. 1994;125:511–516. doi: 10.1083/jcb.125.3.511. PubMed DOI PMC

Tsikitis M., Galata Z., Mavroidis M., Psarras S., Capetanaki Y. Intermediate filaments in cardiomyopathy. Biophys. Rev. 2018;10:1007–1031. doi: 10.1007/s12551-018-0443-2. PubMed DOI PMC

Chamcheu J.C., Siddiqui I.A., Syed D.N., Adhami V.M., Liovic M., Mukhtar H. Keratin gene mutations in disorders of human skin and its appendages. Arch. Biochem. Biophys. 2011;508:123–137. doi: 10.1016/j.abb.2010.12.019. PubMed DOI PMC

Alastalo T.P., West G., Li S.P., Keinanen A., Helenius M., Tyni T., Lapatto R., Turanlahti M., Heikkila P., Kaariainen H., et al. LMNA Mutation c.917T>G (p.L306R) Leads to Deleterious Hyper-Assembly of Lamin A/C and Associates with Severe Right Ventricular Cardiomyopathy and Premature Aging. Hum. Mutat. 2015;36:694–703. doi: 10.1002/humu.22793. PubMed DOI

Eibauer M., Weber M.S., Turgay Y., Sivagurunathan S., Goldman R.D., Medalia O. The molecular architecture of vimentin filaments. bioRxiv. 2021 doi: 10.1101/2021.07.15.452584%. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular structure of soluble vimentin tetramers

. 2023 May 31 ; 13 (1) : 8841. [epub] 20230531

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...