Molecular Interactions Driving Intermediate Filament Assembly
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
731077
Horizon 2020
PubMed
34572105
PubMed Central
PMC8466517
DOI
10.3390/cells10092457
PII: cells10092457
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray crystallography, assembly, chemical analytical cross-linking, cryoelectron microscopy, intermediate filament, keratin, lamin, vimentin,
- MeSH
- cytoskelet chemie metabolismus MeSH
- fyziologie buňky * MeSH
- intermediární filamenta chemie metabolismus MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Given the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision. However, the molecular interactions driving later stages of the filament assembly are still not fully understood. For cytoplasmic IFs, much of the currently available insight is due to chemical cross-linking experiments that date back to the 1990s. This technique has since been radically improved, and several groups have utilized it recently to obtain data on lamin filament assembly. Here, we will summarize these findings and reflect on the remaining open questions and challenges of IF structure. We argue that, in addition to X-ray crystallography, chemical cross-linking and cryoelectron microscopy are the techniques that should enable major new advances in the field in the near future.
Department of Biochemistry Charles University 12800 Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences 14220 Prague Czech Republic
Laboratory for Biocrystallography KU Leuven 3000 Leuven Belgium
Zobrazit více v PubMed
Herrmann H., Bär H., Kreplak L., Strelkov S.V., Aebi U. Intermediate filaments: From cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 2007;8:562. doi: 10.1038/nrm2197. PubMed DOI
Qin Z., Kreplak L., Buehler M.J. Nanomechanical properties of vimentin intermediate filament dimers. Nanotechnology. 2009;20:425101. doi: 10.1088/0957-4484/20/42/425101. PubMed DOI
Szeverenyi I., Cassidy A.J., Chung C.W., Lee B.T., Common J.E., Ogg S.C., Chen H., Sim S.Y., Goh W.L., Ng K.W., et al. The Human Intermediate Filament Database: Comprehensive information on a gene family involved in many human diseases. Hum. Mutat. 2008;29:351–360. doi: 10.1002/humu.20652. PubMed DOI
Guzenko D., Chernyatina A.A., Strelkov S.V. Crystallographic Studies of Intermediate Filament Proteins. Subcell Biochem. 2017;82:151–170. doi: 10.1007/978-3-319-49674-0_6. PubMed DOI
Turgay Y., Eibauer M., Goldman A.E., Shimi T., Khayat M., Ben-Harush K., Dubrovsky-Gaupp A., Sapra K.T., Goldman R.D., Medalia O. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–264. doi: 10.1038/nature21382. PubMed DOI PMC
Aebi U., Cohn J., Buhle L., Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986;323:560–564. doi: 10.1038/323560a0. PubMed DOI
Chernyatina A.A., Guzenko D., Strelkov S.V. Intermediate filament structure: The bottom-up approach. Curr. Opin. Cell Biol. 2015;32:65–72. doi: 10.1016/j.ceb.2014.12.007. PubMed DOI
Eldirany S.A., Lomakin I.B., Ho M., Bunick C.G. Recent insight into intermediate filament structure. Curr. Opin. Cell Biol. 2020;68:132–143. doi: 10.1016/j.ceb.2020.10.001. PubMed DOI PMC
Wilson A.K., Coulombe P.A., Fuchs E. The roles of K5 and K14 head, tail, and R/K L L E G E domains in keratin filament assembly in vitro. J. Cell Biol. 1992;119:401–414. doi: 10.1083/jcb.119.2.401. PubMed DOI PMC
Mucke N., Wedig T., Burer A., Marekov L.N., Steinert P.M., Langowski J., Aebi U., Herrmann H. Molecular and biophysical characterization of assembly-starter units of human vimentin. J. Mol. Biol. 2004;340:97–114. doi: 10.1016/j.jmb.2004.04.039. PubMed DOI
Herrmann H., Haner M., Brettel M., Muller S.A., Goldie K.N., Fedtke B., Lustig A., Franke W.W., Aebi U. Structure and assembly properties of the intermediate filament protein vimentin: The role of its head, rod and tail domains. J. Mol. Biol. 1996;264:933–953. doi: 10.1006/jmbi.1996.0688. PubMed DOI
Herrmann H., Haner M., Brettel M., Ku N.O., Aebi U. Characterization of distinct early assembly units of different intermediate filament proteins. J. Mol. Biol. 1999;286:1403–1420. doi: 10.1006/jmbi.1999.2528. PubMed DOI
Mucke N., Kammerer L., Winheim S., Kirmse R., Krieger J., Mildenberger M., Bassler J., Hurt E., Goldmann W.H., Aebi U., et al. Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophys. J. 2018;114:2408–2418. doi: 10.1016/j.bpj.2018.04.032. PubMed DOI PMC
Premchandar A., Mücke N., Poznański J., Wedig T., Kaus-Drobek M., Herrmann H., Dadlez M. Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange. J. Biol. Chem. 2016;291:24931–24950. doi: 10.1074/jbc.M116.748145. PubMed DOI PMC
Kirmse R., Portet S., Mücke N., Aebi U., Herrmann H., Langowski J. A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. J. Biol. Chem. 2007;282:18563–18572. doi: 10.1074/jbc.M701063200. PubMed DOI
Portet S., Mücke N., Kirmse R., Langowski J., Beil M., Herrmann H. Vimentin intermediate filament formation: In vitro measurement and mathematical modeling of the filament length distribution during assembly. Langmuir ACS J. Surf. Colloids. 2009;25:8817–8823. doi: 10.1021/la900509r. PubMed DOI
Sasse B., Aebi U., Stuurman N. A tailless Drosophila lamin Dm0 fragment reveals lateral associations of dimers. J. Str. Biol. 1998;123:56–66. doi: 10.1006/jsbi.1998.4006. PubMed DOI
Heitlinger E., Peter M., Häner M., Lustig A., Aebi U., Nigg E.A. Expression of chicken lamin B2 in Escherichia coli: Characterization of its structure, assembly, and molecular interactions. J. Cell Biol. 1991;113:485–495. doi: 10.1083/jcb.113.3.485. PubMed DOI PMC
Foeger N., Wiesel N., Lotsch D., Mücke N., Kreplak L., Aebi U., Gruenbaum Y., Herrmann H. Solubility properties and specific assembly pathways of the B-type lamin from Caenorhabditis elegans. J. Str. Biol. 2006;155:340–350. doi: 10.1016/j.jsb.2006.03.026. PubMed DOI
Herrmann H., Aebi U. Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration Into Functionally Distinct Intracellular Scaffolds. Ann. Rev. Biochem. 2004;73:749–789. doi: 10.1146/annurev.biochem.73.011303.073823. PubMed DOI
Etienne-Manneville S. Cytoplasmic Intermediate Filaments in Cell Biology. Ann. Rev. Cell Dev. Biol. 2018;34:1–28. doi: 10.1146/annurev-cellbio-100617-062534. PubMed DOI
Snider N.T., Omary M.B. Post-translational modifications of intermediate filament proteins: Mechanisms and functions. Nat. Rev. Mol. Cell Biol. 2014;15:163–177. doi: 10.1038/nrm3753. PubMed DOI PMC
Nishimura Y., Kasahara K., Inagaki M. Intermediate filaments and IF-associated proteins: From cell architecture to cell proliferation. Proc. Jpn. Acad. Ser. B Phy. Biol. Sci. 2019;95:479–493. doi: 10.2183/pjab.95.034. PubMed DOI PMC
Eriksson J.E., He T., Trejo-Skalli A.V., Härmälä-Braskén A.S., Hellman J., Chou Y.H., Goldman R.D. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J. Cell Sci. 2004;117:919–932. doi: 10.1242/jcs.00906. PubMed DOI
Gruenbaum Y., Aebi U. Intermediate filaments: A dynamic network that controls cell mechanics. F1000prime Rep. 2014;6:54. doi: 10.12703/P6-54. PubMed DOI PMC
Chernyatina A.A., Hess J.F., Guzenko D., Voss J.C., Strelkov S.V. How to Study Intermediate Filaments in Atomic Detail. Methods Enzymol. 2016;568:3–33. doi: 10.1016/bs.mie.2015.09.024. PubMed DOI
Strelkov S.V., Herrmann H., Geisler N., Lustig A., Ivaninskii S., Zimbelmann R., Burkhard P., Aebi U. Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J. Mol. Biol. 2001;306:773–781. doi: 10.1006/jmbi.2001.4442. PubMed DOI
Geisler N., Schünemann J., Weber K., Häner M., Aebi U. Assembly and architecture of invertebrate cytoplasmic intermediate filaments reconcile features of vertebrate cytoplasmic and nuclear lamin-type intermediate filaments. J. Mol. Biol. 1998;282:601–617. doi: 10.1006/jmbi.1998.1995. PubMed DOI
North A.C., Steinert P.M., Parry D.A. Coiled-coil stutter and link segments in keratin and other intermediate filament molecules: A computer modeling study. Proteins. 1994;20:174–184. doi: 10.1002/prot.340200207. PubMed DOI
Stalmans G., Lilina A.V., Vermeire P.J., Fiala J., Novák P., Strelkov S.V. Addressing the Molecular Mechanism of Longitudinal Lamin Assembly Using Chimeric Fusions. Cells. 2020;9:1633. doi: 10.3390/cells9071633. PubMed DOI PMC
Nicolet S., Herrmann H., Aebi U., Strelkov S.V. Atomic structure of vimentin coil 2. J. Str. Biol. 2010;170:369–376. doi: 10.1016/j.jsb.2010.02.012. PubMed DOI
Chernyatina A.A., Nicolet S., Aebi U., Herrmann H., Strelkov S.V. Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly. Proc. Natl. Acad. Sci. USA. 2012;109:13620–13625. doi: 10.1073/pnas.1206836109. PubMed DOI PMC
Korkmaz E.N., Taylor K.C., Andreas M.P., Ajay G., Heinze N.T., Cui Q., Rayment I. A composite approach towards a complete model of the myosin rod. Proteins. 2016;84:172–189. doi: 10.1002/prot.24964. PubMed DOI PMC
Guzenko D., Strelkov S.V. CCFold: Rapid and accurate prediction of coiled-coil structures and application to modelling intermediate filaments. Bioinformatics. 2018;34:215–222. doi: 10.1093/bioinformatics/btx551. PubMed DOI
Ruan J., Xu C., Bian C., Lam R., Wang J.P., Kania J., Min J., Zang J. Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1. FEBS Lett. 2012;586:314–318. doi: 10.1016/j.febslet.2012.01.007. PubMed DOI
Gohara R., Tang D., Inada H., Inagaki M., Takasaki Y., Ando S. Phosphorylation of vimentin head domain inhibits interaction with the carboxyl-terminal end of α-helical rod domain studied by surface plasmon resonance measurements. FEBS Lett. 2001;489:182–186. doi: 10.1016/S0014-5793(01)02108-1. PubMed DOI
Pittenger J.T., Hess J.F., Budamagunta M.S., Voss J.C., Fitzgerald P.G. Identification of phosphorylation-induced changes in vimentin intermediate filaments by site-directed spin labeling and electron paramagnetic resonance. Biochemistry. 2008;47:10863–10870. doi: 10.1021/bi801137m. PubMed DOI PMC
Steinert P.M., Mack J.W., Korge B.P., Gan S.-Q., Haynes S.R., Steven A.C. Glycine loops in proteins: Their occurence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int. J. Biol. Macromol. 1991;13:130–139. doi: 10.1016/0141-8130(91)90037-U. PubMed DOI
Badowski C., Sim A.Y.L., Verma C., Szeverényi I., Natesavelalar C., Terron-Kwiatkowski A., Harper J., O′Toole E.A., Lane E.B. Modeling the Structure of Keratin 1 and 10 Terminal Domains and their Misassembly in Keratoderma. J. Investig. Dermatol. 2017;137:1914–1923. doi: 10.1016/j.jid.2017.03.038. PubMed DOI
Bousquet O., Ma L., Yamada S., Gu C., Idei T., Takahashi K., Wirtz D., Coulombe P.A. The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro. J. Cell Biol. 2001;155:747–754. doi: 10.1083/jcb.200104063. PubMed DOI PMC
Hess J.F., Budamagunta M.S., Shipman R.L., FitzGerald P.G., Voss J.C. Characterization of the Linker 2 Region in Human Vimentin Using Site-Directed Spin Labeling and Electron Paramagnetic Resonance. Biochemistry. 2006;45:11737–11743. doi: 10.1021/bi060741y. PubMed DOI PMC
Hess J.F., Voss J.C., FitzGerald P.G. Real-time Observation of Coiled-coil Domains and Subunit Assembly in Intermediate Filaments. J. Biol. Chem. 2002;277:35516–35522. doi: 10.1074/jbc.M206500200. PubMed DOI PMC
Hess J.F., Budamagunta M.S., FitzGerald P.G., Voss J.C. Characterization of Structural Changes in Vimentin Bearing an Epidermolysis Bullosa Simplex-like Mutation Using Site-directed Spin Labeling and Electron Paramagnetic Resonance. J. Biol. Chem. 2005;280:2141–2146. doi: 10.1074/jbc.M412254200. PubMed DOI PMC
Aziz A., Hess J.F., Budamagunta M.S., Voss J.C., FitzGerald P.G. Site-directed Spin Labeling and Electron Paramagnetic Resonance Determination of Vimentin Head Domain Structure. J. Biol. Chem. 2010;285:15278–15285. doi: 10.1074/jbc.M109.075598. PubMed DOI PMC
Aziz A., Hess J.F., Budamagunta M.S., FitzGerald P.G., Voss J.C. Head and Rod 1 Interactions in Vimentin. J. Biol. Chem. 2009;284:7330–7338. doi: 10.1074/jbc.M809029200. PubMed DOI PMC
Hess J.F., Budamagunta M.S., Aziz A., FitzGerald P.G., Voss J.C. Electron paramagnetic resonance analysis of the vimentin tail domain reveals points of order in a largely disordered region and conformational adaptation upon filament assembly. Protein Sci. Publ. Protein Soc. 2013;22:47–55. doi: 10.1002/pro.2182. PubMed DOI PMC
Hess J.F., Budamagunta M.S., Voss J.C., FitzGerald P.G. Structural Characterization of Human Vimentin Rod 1 and the Sequencing of Assembly Steps in Intermediate Filament Formation in Vitro Using Site-directed Spin Labeling and Electron Paramagnetic Resonance. J. Biol. Chem. 2004;279:44841–44846. doi: 10.1074/jbc.M406257200. PubMed DOI PMC
Budamagunta M.S., Hess J.F., Fitzgerald P.G., Voss J.C. Describing the structure and assembly of protein filaments by EPR spectroscopy of spin-labeled side chains. Cell Biochem. Biophys. 2007;48:45–53. doi: 10.1007/s12013-007-0035-4. PubMed DOI
Aziz A., Hess J.F., Budamagunta M.S., Voss J.C., Kuzin A.P., Huang Y.J., Xiao R., Montelione G.T., FitzGerald P.G., Hunt J.F. The Structure of Vimentin Linker 1 and Rod 1B Domains Characterized by Site-directed Spin-labeling Electron Paramagnetic Resonance (SDSL-EPR) and X-ray Crystallography. J. Biol. Chem. 2012;287:28349–28361. doi: 10.1074/jbc.M111.334011. PubMed DOI PMC
Steinert P.M., Marekov L.N., Parry D.A. Diversity of intermediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments. J. Biol. Chem. 1993;268:24916–24925. doi: 10.1016/S0021-9258(19)74552-9. PubMed DOI
Eldirany S.A., Ho M., Hinbest A.J., Lomakin I.B., Bunick C.G. Human keratin 1/10-1B tetramer structures reveal a knob-pocket mechanism in intermediate filament assembly. EMBO J. 2019;38:e100741. doi: 10.15252/embj.2018100741. PubMed DOI PMC
Kim B., Kim S., Jin M.S. Crystal structure of the human glial fibrillary acidic protein 1B domain. Biochem. Biophys. Res. Commun. 2018;503:2899–2905. doi: 10.1016/j.bbrc.2018.08.066. PubMed DOI
Ahn J., Jo I., Kang S.-m., Hong S., Kim S., Jeong S., Kim Y.-H., Park B.-J., Ha N.-C. Structural basis for lamin assembly at the molecular level. Nat. Commun. 2019;10:3757. doi: 10.1038/s41467-019-11684-x. PubMed DOI PMC
Lilina A.V., Chernyatina A.A., Guzenko D., Strelkov S.V. Lateral A11 type tetramerization in lamins. J. Str. Biol. 2020;209:107404. doi: 10.1016/j.jsb.2019.10.006. PubMed DOI
Bernot K.M., Lee C.H., Coulombe P.A. A small surface hydrophobic stripe in the coiled-coil domain of type I keratins mediates tetramer stability. J Cell Biol. 2005;168:965–974. doi: 10.1083/jcb.200408116. PubMed DOI PMC
Parry D.A., Steinert P.M. Intermediate filaments: Molecular architecture, assembly, dynamics and polymorphism. Q Rev. Biophys. 1999;32:99–187. doi: 10.1017/S0033583500003516. PubMed DOI
Makarov A.A., Zou J., Houston D.R., Spanos C., Solovyova A.S., Cardenal-Peralta C., Rappsilber J., Schirmer E.C. Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. Nat. Commun. 2019;10:3056. doi: 10.1038/s41467-019-11063-6. PubMed DOI PMC
Herrmann H., Kreplak L., Aebi U. Methods in Cell Biology. Volume 78. Academic Press; Cambridge, MA, USA: 2004. Isolation, Characterization, and In Vitro Assembly of Intermediate Filaments; pp. 3–24. PubMed
Herrmann H., Wedig T., Porter R.M., Lane E.B., Aebi U. Characterization of early assembly intermediates of recombinant human keratins. J. Str. Biol. 2002;137:82–96. doi: 10.1006/jsbi.2002.4466. PubMed DOI
Sokolova A.V., Kreplak L., Wedig T., Mücke N., Svergun D.I., Herrmann H., Aebi U., Strelkov S.V. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc. Nat. Acad. Sci. USA. 2006;103:16206. doi: 10.1073/pnas.0603629103. PubMed DOI PMC
Weber M.S., Eibauer M., Sivagurunathan S., Magin T.M., Goldman R.D., Medalia O. Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. Elife. 2021;10:e70307. doi: 10.7554/eLife.70307. PubMed DOI PMC
Sinz A. Divide and conquer: Cleavable cross-linkers to study protein conformation and protein-protein interactions. Anal. Bioanal. Chem. 2017;409:33–44. doi: 10.1007/s00216-016-9941-x. PubMed DOI
Iacobucci C., Piotrowski C., Aebersold R., Amaral B.C., Andrews P., Bernfur K., Borchers C., Brodie N.I., Bruce J.E., Cao Y., et al. First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study. Anal. Chem. 2019;91:6953–6961. doi: 10.1021/acs.analchem.9b00658. PubMed DOI PMC
Pan D., Brockmeyer A., Mueller F., Musacchio A., Bange T. Simplified Protocol for Cross-linking Mass Spectrometry Using the MS-Cleavable Cross-linker DSBU with Efficient Cross-link Identification. Anal. Chem. 2018;90:10990–10999. doi: 10.1021/acs.analchem.8b02593. PubMed DOI
Müller M.Q., Dreiocker F., Ihling C.H., Schäfer M., Sinz A. Cleavable cross-linker for protein structure analysis: Reliable identification of cross-linking products by tandem MS. Anal. Chem. 2010;82:6958–6968. doi: 10.1021/ac101241t. PubMed DOI
Rozbesky D., Rosulek M., Kukacka Z., Chmelik J., Man P., Novak P. Impact of Chemical Cross-Linking on Protein Structure and Function. Anal. Chem. 2018;90:1104–1113. doi: 10.1021/acs.analchem.7b02863. PubMed DOI
Han K.K., Tetaert D., Debuire B., Dautrevaux M., Biserte G. (Sequential Edman degredation) Biochimie. 1977;59:557–576. doi: 10.1016/S0300-9084(77)80166-1. PubMed DOI
Sinz A. Cross-Linking/Mass Spectrometry for Studying Protein Structures and Protein-Protein Interactions: Where Are We Now and Where Should We Go from Here? Angew. Chem. Int. Ed. Engl. 2018;57:6390–6396. doi: 10.1002/anie.201709559. PubMed DOI
Iacobucci C., Gotze M., Ihling C.H., Piotrowski C., Arlt C., Schafer M., Hage C., Schmidt R., Sinz A. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein-protein interactions. Nat. Protoc. 2018;13:2864–2889. doi: 10.1038/s41596-018-0068-8. PubMed DOI
Chavez J.D., Mohr J.P., Mathay M., Zhong X., Keller A., Bruce J.E. Systems structural biology measurements by in vivo cross-linking with mass spectrometry. Nat. Protoc. 2019;14:2318–2343. doi: 10.1038/s41596-019-0181-3. PubMed DOI PMC
Parry D.A., Marekov L.N., Steinert P.M. Subfilamentous protofibril structures in fibrous proteins: Cross-linking evidence for protofibrils in intermediate filaments. J. Biol. Chem. 2001;276:39253–39258. doi: 10.1074/jbc.M104604200. PubMed DOI
Steinert P.M., Marekov L.N., Parry D.A. Conservation of the structure of keratin intermediate filaments: Molecular mechanism by which different keratin molecules integrate into preexisting keratin intermediate filaments during differentiation. Biochemistry. 1993;32:10046–10056. doi: 10.1021/bi00089a021. PubMed DOI
Steinert P.M., Marekov L.N., Fraser R.D., Parry D.A. Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J. Mol. Biol. 1993;230:436–452. doi: 10.1006/jmbi.1993.1161. PubMed DOI
Steinert P.M., Marekov L.N., Parry D.A. Molecular parameters of type IV alpha-internexin and type IV-type III alpha-internexin-vimentin copolymer intermediate filaments. J. Biol. Chem. 1999;274:1657–1666. doi: 10.1074/jbc.274.3.1657. PubMed DOI
Steinert P.M., Roop D.R. Molecular and cellular biology of intermediate filaments. Ann. Rev. Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. PubMed DOI
Norlen L., Masich S., Goldie K.N., Hoenger A. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography. Exp. Cell Res. 2007;313:2217–2227. doi: 10.1016/j.yexcr.2007.03.037. PubMed DOI
Strelkov S.V., Herrmann H., Aebi U. Molecular architecture of intermediate filaments. BioEssays News Rev. Mol. Cell. Dev. Biol. 2003;25:243–251. doi: 10.1002/bies.10246. PubMed DOI
Kapinos L.E., Schumacher J., Mücke N., Machaidze G., Burkhard P., Aebi U., Strelkov S.V., Herrmann H. Characterization of the head-to-tail overlap complexes formed by human lamin A, B1 and B2 “half-minilamin” dimers. J. Mol. Biol. 2010;396:719–731. doi: 10.1016/j.jmb.2009.12.001. PubMed DOI
Heitlinger E., Peter M., Lustig A., Villiger W., Nigg E.A., Aebi U. The role of the head and tail domain in lamin structure and assembly: Analysis of bacterially expressed chicken lamin A and truncated B2 lamins. J. Str. Biol. 1992;108:74–89. doi: 10.1016/1047-8477(92)90009-Y. PubMed DOI
Herrmann H., Aebi U. Intermediate Filaments: Structure and Assembly. Cold Spring Harb. Perspect. Biol. 2016;8:a018242. doi: 10.1101/cshperspect.a018242. PubMed DOI PMC
Lee C.H., Kim M.S., Chung B.M., Leahy D.J., Coulombe P.A. Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat. Struct. Mol. Biol. 2012;19:707–715. doi: 10.1038/nsmb.2330. PubMed DOI PMC
Lee C.-H., Kim M.-S., Li S., Leahy D.J., Coulombe P.A. Structure-Function Analyses of a Keratin Heterotypic Complex Identify Specific Keratin Regions Involved in Intermediate Filament Assembly. Structure. 2020;28:355–362.e354. doi: 10.1016/j.str.2020.01.002. PubMed DOI PMC
Lomakin I.B., Hinbest A.J., Ho M., Eldirany S.A., Bunick C.G. Crystal Structure of Keratin 1/10(C401A) 2B Heterodimer Demonstrates a Proclivity for the C-Terminus of Helix 2B to Form Higher Order Molecular Contacts. Yale J. Biol. Med. 2020;93:3–17. PubMed PMC
Bunick C.G., Milstone L.M. The X-Ray Crystal Structure of the Keratin 1-Keratin 10 Helix 2B Heterodimer Reveals Molecular Surface Properties and Biochemical Insights into Human Skin Disease. J. Investig. Dermatol. 2017;137:142–150. doi: 10.1016/j.jid.2016.08.018. PubMed DOI PMC
Russel D., Lasker K., Webb B., Velázquez-Muriel J., Tjioe E., Schneidman-Duhovny D., Peterson B., Sali A. Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies. PLoS Biol. 2012;10:e1001244. doi: 10.1371/journal.pbio.1001244. PubMed DOI PMC
Toivola D.M., Boor P., Alam C., Strnad P. Keratins in health and disease. Curr. Opin. Cell Biol. 2015;32:73–81. doi: 10.1016/j.ceb.2014.12.008. PubMed DOI
Klymkowsky M.W. Filaments and phenotypes: Cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Research. 2019;8 doi: 10.12688/f1000research.19950.1. PubMed DOI PMC
Fuchs E. Intermediate filaments and disease: Mutations that cripple cell strength. J. Cell Biol. 1994;125:511–516. doi: 10.1083/jcb.125.3.511. PubMed DOI PMC
Tsikitis M., Galata Z., Mavroidis M., Psarras S., Capetanaki Y. Intermediate filaments in cardiomyopathy. Biophys. Rev. 2018;10:1007–1031. doi: 10.1007/s12551-018-0443-2. PubMed DOI PMC
Chamcheu J.C., Siddiqui I.A., Syed D.N., Adhami V.M., Liovic M., Mukhtar H. Keratin gene mutations in disorders of human skin and its appendages. Arch. Biochem. Biophys. 2011;508:123–137. doi: 10.1016/j.abb.2010.12.019. PubMed DOI PMC
Alastalo T.P., West G., Li S.P., Keinanen A., Helenius M., Tyni T., Lapatto R., Turanlahti M., Heikkila P., Kaariainen H., et al. LMNA Mutation c.917T>G (p.L306R) Leads to Deleterious Hyper-Assembly of Lamin A/C and Associates with Severe Right Ventricular Cardiomyopathy and Premature Aging. Hum. Mutat. 2015;36:694–703. doi: 10.1002/humu.22793. PubMed DOI
Eibauer M., Weber M.S., Turgay Y., Sivagurunathan S., Goldman R.D., Medalia O. The molecular architecture of vimentin filaments. bioRxiv. 2021 doi: 10.1101/2021.07.15.452584%. DOI