Proteomic changes in various plant tissues associated with chromium stress in sunflower
Status PubMed-not-MEDLINE Jazyk angličtina Země Saúdská Arábie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35531205
PubMed Central
PMC9072932
DOI
10.1016/j.sjbs.2021.12.042
PII: S1319-562X(21)01075-5
Knihovny.cz E-zdroje
- Klíčová slova
- Chromium, Heavy metal, Helianthus annuus, Physiological alterations, Proteomics,
- Publikační typ
- časopisecké články MeSH
Heavy metal stress is one of the major abiotic stresses that cause environmental pollution in recent decades. An elevated concentration of these heavy metals is highly toxic to plant. Chromium (Cr) is one of the heavy metals whose concentration in the environment is still increasing alarmingly. It is harmful for plant growth and achene yield. To check out the growth and protein alternation towards pollutants, two sunflower varieties (RA-713 and AHO-33) were subjected to different chromium concentrations (control, 200 ppm, 400 ppm) by soil application. This study has elaborated that 400 ppm Cr resulted in a reduction of various growth parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used to enhance the understanding of plant proteomic modulation under Cr stress. Different protein bands like 48 and 49, 26 kDa have newly appeared, and three 60, 47, and 42 kDa, and two protein bands 49 and 13 kDa were up-regulated in seeds of RA-713 and AHO-33, respectively. Some proteins (52, 16 kDa) are down-regulated in leaf tissues of both varieties. Only 6 and 81 kDa protein showed up-regulation and 154 kDa down-regulation behavior in the shoot in response to stress. The finding s of study might support the selection of tolerant genotype under Cr contamination and the discovery of new protein biomarkers that can use as monitoring tools in heavy metal stress biology.
Department of Agronomy The University of Haripur Haripur 22620 Pakistan
Department of Botany Hindu College Moradabad India
Department of Botany University of the Punjab Lahore 54000 Punjab Pakistan
Zobrazit více v PubMed
Abbas M., Anwar J., Zafar-ul-Hye M., Khan R.I., Saleem M., Rahi A.A., Danish S., Datta R. Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae. 2020;6:28.
Ahmed N., Ahsen S., Ali M.A., Hussain M.B., Hussain S.B., Rasheed M.K., Butt B., Irshad I., Danish S. Rhizobacteria and silicon synergy modulates the growth, nutrition and yield of mungbean under saline soil. Pakistan J. Bot. 2020;52:9–15. doi: 10.30848/PJB2020-1(16). DOI
Ali S., Bharwana S.A., Rizwan M., Farid M., Kanwal S., Ali Q., Ibrahim M., Gill R.A., Khan M.D. Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environ. Sci. Pollut. Res. 2015;22:10601–10609. doi: 10.1007/s11356-015-4271-7. PubMed DOI
Alireza S. Differential proteomics analysis in sunflower (Helianthus annuus L.) Biotechnology. 2014;13:245–247. doi: 10.3923/biotech.2014.245.247. DOI
Amin H., Arain B.A., Amin F., Surhio M.A. Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L. Am. J. Plant Sci. 2013;04:2431–2439. doi: 10.4236/ajps.2013.412302. DOI
Anjum S.A., Ashraf U., Khan I., Tanveer M., Shahid M., Shakoor A., Wang L. Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere. 2017;27:262–273. doi: 10.1016/S1002-0160(17)60315-1. DOI
Bagheri R., Bashir H., Ahmad J., Baig A., Qureshi M.I. Effects of cadmium on leaf proteome of spinacia oleracia (spinach) Int. J. Agric. Food Sci. Technol. ISSN. 2013;4:33–36.
Berg J.M., Tymoczko J.L., Stryer L. W.H Freeman and Company; New York City, NY, USA: 2002. Biochemistry.
Berni R., Luyckx M., Xu X., Legay S., Sergeant K., Hausman J.F., Lutts S., Cai G., Guerriero G. Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ. Exp. Bot. 2019;161:98–106. doi: 10.1016/j.envexpbot.2018.10.017. DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Cánovas F.M., Dumas-Gaudot E., Recorbet G., Jorrin J., Mock H.P., Rossignol M. Plant proteome analysis. Proteomics. 2004:285–298. doi: 10.1002/pmic.200300602. PubMed DOI
Cantamutto M., Poverene M. Genetically modified sunflower release: opportunities and risks. F. Crop. Res. 2007;101(2):133–144.
Castillejo M.A., Maldonado A.M., Ogueta S., Jorrin J.V. Proteomic analysis of responses to drought stress in sunflower (Helianthus annuus) leaves by 2DE gel electrophoresis and mass spectrometry. Open Proteomics J. 2008;1:59–71. doi: 10.2174/1875039700801010059. DOI
Cvjetko P., Tolić S., Šikić S., Balen B., Tkalec M., Vidaković-Cifrek Ž., Pavlica M. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (Lemna Minor L.) Arh. Hig. Rada Toksikol. 2010;61:287–296. doi: 10.2478/10004-1254-61-2010-2059. PubMed DOI
Danish S., Tahir F.A., Rasheed M.K., Ahmad N., Ali M.A., Kiran S., Younis U., Irshad I., Butt B. Effect of foliar application of Fe and banana peel waste biochar on growth, chlorophyll content and accessory pigments synthesis in spinach under chromium (IV) toxicity. Open Agric. 2019;4 doi: 10.1515/opag-2019-0034. DOI
Danish S., Zafar-ul-Hye M. Combined role of ACC deaminase producing bacteria and biochar on cereals productivity under drought. Phyton-International Journal of Experimental Botany. 2020;89:217–227. doi: 10.32604/phyton.2020.08523. DOI
Dube B.K., Tewari K., Chatterjee J., Chatterjee C. Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere. 2003;53:1147–1153. doi: 10.1016/S0045-6535(03)00570-8. PubMed DOI
El-Gam A.-D.-E.-G. Protein profile changes in Chrococcus dispersus, Microcystis flos-aquae and Microcoleus steenstruqii in response to cadmium treatments. J. Sci. 2008;20:131–148.
Ejaz F., Nawaz M.F., Dasti Z.A., Gul S., Islam U., Waqar M. Risk assessment of heavy metal and microbial contamination in commercially available salad vegetables of Faisalabad, Pakistan. Pakistan J. Botany. 2020;52(4):1397–1403.
Eleftheriou E.P., Adamakis I.D.S., Panteris E., Fatsiou M. Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. Int. J. Mol. Sci. 2015;16:15852–15871. doi: 10.3390/ijms160715852. PubMed DOI PMC
Ertani A., Mietto A., Borin M., Nardi S. Chromium in agricultural soils and crops: a review. Water. Air. Soil Pollut. 2017;228:190. doi: 10.1007/s11270-017-3356-y. DOI
Faisal M., Hasnain S. Chromate resistant Bacillus cereus augments sunflower growth by reducing toxicity of Cr (VI) J. Plant Biol. 2005;48:187–194. doi: 10.1007/BF03030407. DOI
Garcia J.S., Gratão P.L., Azevedo R.A., Arruda M.A.Z. Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. J. Agric. Food Chem. 2006;54:8623–8630. doi: 10.1021/jf061593l. PubMed DOI
Gomathi R., Yukashini K., Shiyamala S., Vasantha S., Suganya A., Rakkiyappan P. Induced response of sugarcane variety Co 86032 for thermotolerance. Sugar Tech. 2013;15:17–26. doi: 10.1007/s12355-012-0192-7. DOI
Gratão P.L., Monteiro C.C., Antunes A.M., Peres L.E.P., Azevedo R.A. Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann. Appl. Biol. 2008;153:321–333. doi: 10.1111/j.1744-7348.2008.00299.x. DOI
Guijun D., Weidong P., Gongshe L. The analysis of proteome changes in sunflower seeds induced by N + implantation. J. Biosci. 2006;31:247–253. doi: 10.1007/BF02703917. PubMed DOI
Hagemeyer J., Breckle S.W. In: Plant Roots: The Hidden Half. Waisel Y., Eshel A., Kafkafi U., editors. Marcel Dekker; New York: 1996. Growth under trace elements stress; pp. 415–433.
Hameed A., Tariq M.S., Babar M.A., Iqbal A., Haq M.A., Ali H. Comparative seed storage protein profiling of kabuli chickpea genotypes. Pakistan J. Bot. 2009;41:703–710.
Horvat T., Vidaković-Cifrek Ž., Oreščanin V., Tkalec M., Pevalek-Kozlina B. Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci. Total Environ. 2007;384:229–238. doi: 10.1016/j.scitotenv.2007.06.007. PubMed DOI
Jabeen R., Ahmad A., Iqbal M. Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot. Rev. 2009;75:339–364. doi: 10.1007/s12229-009-9036-x. DOI
Jorrín J.V., Rubiales D., Dumas-Gaudot E., Recorbet G., Maldonado A., Castillejo M.A., Curto M. Proteomics: a promising approach to study biotic interaction in legumes. A review. Euphytica. 2006;147:37–47. doi: 10.1007/s10681-006-3061-1. DOI
Kasai Y., Hyodo H., Ikoma Y., Yano M. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) oxidase in broccoli florets and from Escherichia coli cells transformed with cDNA of broccoli ACC oxidase. Bot. Bull. Acad. Sin. 1998;39:225–230.
Keyster M., Niekerk L.A., Basson G., Carelse M., Bakare O., Ludidi N., Klein A., Mekuto L., Gokul A. Decoding heavy metal stress signalling in plants: towards improved food security and safety. Plants. 2020;9(12):1781. doi: 10.3390/plants9121781. PubMed DOI PMC
Kiribandage C.H.W. ProQuest LLC; 789 East Eisenhower Parkway: 2012. Proteomic Approaches to Elucidate Molecular Mechanisms of Metal Accumulation in Plants with Focus on Arsenic. UMI.3534934.
Kumar V., Sharma A., Kaur P., Singh Sidhu G.P., Bali A.S., Bhardwaj R., Thukral A.K., Cerda A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere. 2019;216:449–462. doi: 10.1016/j.chemosphere.2018.10.066. PubMed DOI
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Ma J., Lv C., Xu M., Chen G., Lv C., Gao Z. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ. Sci. Pollut. Res. 2016;23:1768–1778. doi: 10.1007/s11356-015-5439-x. PubMed DOI
Ma L.Q., Komar K.M., Tu C., Zhang W., Cai Y., Kennelley E.D. A fern that hyperaccumulates arsenic. Nature. 2001;409:579. doi: 10.1038/35054664. PubMed DOI
Maiti S., Ghosh N., Mandal C., Das K., Dey N., Adak M.K. Responses of the maize plant to chromium stress with reference to antioxidation activity. Brazilian J. Plant Physiol. 2012;24:203–212. doi: 10.1590/S1677-04202012000300007. DOI
Nath K., Saini S., Sharma Y.K. Chromium in tannery industry effluent and its effect on plant metabolism and growth. J. Environ. Biol. 2005;26:197–204. PubMed
Ozdemir C., Karatas M., Dursun S., Argun M.E., Dogan S. Effect of MnSO4 on the chromium removal from the leather industry wastewater. Environ. Technol. 2005;26:397–400. doi: 10.1080/09593332608618551. PubMed DOI
Palma J.M., Sandalio L.M., Javier Corpas F., Romero-Puertas M.C., McCarthy I., Del Río L.A. Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol. Biochem. 2002:521–530. doi: 10.1016/S0981-9428(02)01404-3. DOI
Rafiullah, Jamal Khan, M., Muhammad, D., Fahad, S., Adnan, M., Wahid, F., Alamri, S., Khan, F., Muhammad Dawar, K., Irshad, I., Danish, S., Arif, M., Amanullah, Saud, S., Khan, B., Ahmad Mian, I., Datta, R., Zarei, T., Ali Shah, A., Ramzan, M., Zafar Ul Hye, M., Mussarat, M., Siddiqui, M.H., 2020a. Phosphorus nutrient management through synchronization of application methods and rates in wheat and maize crops. Plants 9, 1389. 10.3390/plants9101389. PubMed PMC
Rafiullah, Tariq, M., Khan, F., Shah, A.H., Fahad, S., Wahid, F., Ali, J., Adnan, M., Ahmad, M., Irfan, M., Zafar-ul-Hye, M., Battaglia, M.L., Zarei, T., Datta, R., Saleem, I.A., Hafeez-u-Rehman, Danish, S., 2020b. Effect of micronutrients foliar supplementation on the production and eminence of plum. Qual. Assur. Saf. Crop. Foods 12, 32–40. 10.15586/qas.v12iSP1.793.
Rani U.R., Reddy A.R. Salt stress responsive polypeptides in germinating seeds and young seedlings of Indica Rice (Oryza sativa L.) J. Plant Physiol. 1994;143:250–253. doi: 10.1016/S0176-1617(11)81696-2. DOI
Rossignol M. Analysis of the plant proteome. Curr. Opin. Biotechnol. 2001;12(2):131–134. doi: 10.1016/S0958-1669(00)00186-5. PubMed DOI
Salt D.E., Smith R.D., Raskin I. Phytoremediation. Annu. Rev. Plant Biol. 1998;49:643–668. PubMed
Shafiq M., Bakht J., Iqbal A., Shafi M. Growth, protein expression and heavy metal uptake by tobacco under heavy metals contaminated soil. Pakistan J. Bot. 2020;52(5):1569–1576.
Shahid M., Shamshad S., Rafiq M., Khalid S., Bibi I., Niazi N.K., Dumat C., Rashid M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere. 2017;178:513–533. doi: 10.1016/j.chemosphere.2017.03.074. PubMed DOI
Shanker A.K., Djanaguiraman M., Sudhagar R., Chandrashekar C.N., Pathmanabhan G. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci. 2004;166:1035–1043. doi: 10.1016/j.plantsci.2003.12.015. DOI
Stambulska U.Y., Bayliak M.M., Lushchak V.I. Chromium(VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. Biomed Res. Int. 2018;2018:1–13. doi: 10.1155/2018/8031213. PubMed DOI PMC
Steel R.G., Torrie J.H., Dickey D.A. third ed. McGraw Hill Book International Co.; Singapore: 1997. Principles and Procedures of Statistics: A Biometrical Approach.
Sytar O., Ghosh S., Malinska H., Zivcak M., Brestic M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol. Plant. 2020;173(1):148–166. PubMed
Sytar O., Kumari P., Yadav S., Brestic M., Rastogi A. Phytohormone priming: regulator for heavy metal stress in plants. J. Plant Growth Regul. 2019;38(2):739–752.
Tang J., Xu J., Wu Y., Li Y., Tang Q. Effects of high concentration of chromium stress on physiological and biochemical characters and accumulation of chromium in tea plant (Camellia sinensis L.) African J. Biotechnol. 2012;11:2248–2255. doi: 10.5897/ajb11.2402. DOI
Ullah A., Ali M., Shahzad K., Ahmad F., Iqbal S., Habib Ur Rahman M., Ahmad S., Mazhar Iqbal M., Danish S., Fahad S., Alkahtani J., Soliman Elshikh M., Datta R. Impact of seed dressing and soil application of potassium humate on cotton plants productivity and fiber quality. Plants. 2020;9:1444. PubMed PMC
Verbi F.M., Arruda S.C.C., Rodriguez A.P.M., Pérez C.A., Arruda M.A.Z. Metal-binding proteins scanning and determination by combining gel electrophoresis, synchrotron radiation X-ray fluorescence and atomic spectrometry. J. Biochem. Biophys. Methods. 2005;62:97–109. doi: 10.1016/j.jbbm.2004.09.008. PubMed DOI
Wahid F., Fahad S., Danish S., Adnan M., Yue Z., Saud S., Siddiqui M.H., Brtnicky M., Hammerschmiedt T., Datta R. Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture. 2020;10:334. doi: 10.3390/agriculture10080334. DOI
Zafar-ul-Hye M., Shahjahan A., Danish S., Abid M., Qayyum M.F. Mitigation of cadmium toxicity induced stress in wheat by ACC-deaminase containing PGPR isolated from cadmium polluted wheat rhizosphere. Pakistan J. Bot. 2018;50:1727–1734.
Zafar-ul-Hye M., Zahra M.B., Danish S., Abbas M., Rehim A., Akbar M.N., Iftikhar A., Gul M., Nazir I., Abid M., Tahzeeb-ul-Hassan M., Murtaza M. Multi-strain inoculation with PGPR producing ACC deaminase is more effective than single-strain inoculation to improve wheat (Triticum aestivum) growth and yield. Phyton-International Journal of Experimental Botany. 2020;89:405–413. doi: 10.32604/phyton.2020.08918. DOI
Zupančič M., Bukovec N., Milačič R., Ščančar J. Comparison of various phosphate stabilisation agents for the immobilisation of Ni and Zn in sewage sludge. Water. Air. Soil Pollut. 2004;156:57–69. doi: 10.1023/B:WATE.0000036789.07619.b6. DOI