Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33086633
PubMed Central
PMC7603365
DOI
10.3390/plants9101389
PII: plants9101389
Knihovny.cz E-zdroje
- Klíčová slova
- band application, calcareous soil, foliar application, grain yield, nitrogen, phosphorus,
- Publikační typ
- časopisecké články MeSH
Management of inorganic fertilizer is very important to obtain maximum crop yield and improved nutrient use efficiency in cereal crops. Fixation of phosphatic fertilizers in alkaline soils due to calcareousness is one of the major hurdles. It induces phosphorus nutritional stress that can decrease the yield of maize and wheat. Selection of a suitable application method and proper stage of crop for phosphorus (P) fertilizer has prime importance in better uptake of P and crop production. Among different application methods, soil and foliar application are widely adopted. In wheat and maize, knee height + tasseling and stem elongation + booting are critical stages towards P deficiency. That is why field trials were conducted to evaluate the supplemental effect of foliar P on maize and wheat yields. For that, 144 mM KH2PO4 was applied as foliar at knee height + tasseling and stem elongation + boot stages in maize and wheat, respectively. Soil application of 0, 20, 40 and 60 kg P ha-1 was done through broadcast and band methods. Results showed that foliar spray of 144 mM KH2PO4 at knee height + tasseling and stem elongation + boot stages in wheat and maize significantly enhanced grains yield and phosphorus use efficiency (PUE) where P was applied as banding or broadcast at the time of sowing. A significant decreasing trend in response to increasing soil P levels validated the efficacious role and suitability of foliar P. In conclusion, the use of P as foliar at knee height + tasseling and stem elongation + boot stages is an efficacious way to manage P fertilizer.
Department of Agriculture University of Swabi Swabi 23561 Pakistan
Department of Agronomy and Plant Breeding Yasouj University Yasouj 7591874934 Iran
Department of Agronomy the University of Agriculture Peshawar 25130 Pakistan
Department of Agronomy the University of Haripur Khyber Pakhtunkhwa 22620 Pakistan
Department of Botany the Islamia University of Bahawalpur Punjab 63100 Pakistan
Department of Botany University of Narowal Punjab 51801 Pakistan
Department of Environmental Sciences University of Peshawar Peshawar 25120 Pakistan
Department of Horticulture Northeast Agriculture University Harbin 150036 China
Zobrazit více v PubMed
General Assembly United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. [(accessed on 9 October 2020)];2015 Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld.
Stubenrauch J., Garske B., Ekardt F. Sustainable land use, soil protection and phosphorus management from a cross-national perspective. Sustainability. 2018;10:1988. doi: 10.3390/su10061988. DOI
Yadav H., Fatima R., Sharma A., Mathur S. Enhancement of applicability of rock phosphate in alkaline soils by organic compost. Appl. Soil Ecol. 2017;113:80–85. doi: 10.1016/j.apsoil.2017.02.004. DOI
Salimpour S., Khavazi K., Nadian H., Besharati H., Miransari M. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust. J. Crop Sci. 2010;4:330–334.
Adeyemi O., Keshavarz-Afshar R., Jahanzad E., Battaglia M.L., Luo Y., Sadeghpour A. Effect of Wheat Cover Crop and Split Nitrogen Application on Corn Yield and Nitrogen Use Efficiency. Agronomy. 2020;10:1081. doi: 10.3390/agronomy10081081. DOI
Ketterings Q., Czymmek K. Removal of Phosphorus by Field Crops. Nutrient Management Spear Program, Cornell University; Ithaca, NY, USA: [(accessed on 25 July 2020)]. (Agronomy Fact Sheet Series). Fact Sheet #28. Available online: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet28.pdf.
Qureshi M.A., Ahmad Z.A., Akhtar N., Iqbal A., Mujeeb F., Shakir M.A. Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. J. Anim. Plant Sci. 2012;22:204–210.
Halajnia A., Haghnia G.H., Fotovat A., Khorasani R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma. 2009;150:209–213. doi: 10.1016/j.geoderma.2009.02.010. DOI
Von Uexküll H.R., Mutert E. Global extent, development and economic impact of acid soils. Plant Soil. 1995;171:1–15. doi: 10.1007/BF00009558. DOI
Bieleski R.L. Phosphate Pools, Phosphate Transport, and Phosphate Availability. Annu. Rev. Plant Physiol. 1973;24:225–252. doi: 10.1146/annurev.pp.24.060173.001301. DOI
López-Bucio J., De la Vega O.M., Guevara-García A., Herrera-Estrella L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 2000;18:450–453. doi: 10.1038/74531. PubMed DOI
Meena R.S., Kumar S., Datta R., Lal R., Vijayakumar V., Brtnicky M., Sharma M.P., Yadav G.S., Jhariya M.K., Jangir C.K. Impact of agrochemicals on soil microbiota and management: A review. Land. 2020;9:34. doi: 10.3390/land9020034. DOI
Brtnicky M., Dokulilova T., Holatko J., Pecina V., Kintl A., Latal O., Vyhnanek T., Prichystalova J., Datta R. Long-Term Effects of Biochar-Based Organic Amendments on Soil Microbial Parameters. Agronomy. 2019;9:747. doi: 10.3390/agronomy9110747. DOI
Molaei A., Lakzian A., Datta R., Haghnia G., Astaraei A., Rasouli-Sadaghiani M., Ceccherini M.T. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int. Agrophys. 2017;31:499. doi: 10.1515/intag-2016-0084. DOI
Molaei A., Lakzian A., Haghnia G., Astaraei A., Rasouli-Sadaghiani M., Ceccherini M.T., Datta R. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE. 2017;12:499. doi: 10.1371/journal.pone.0180663. PubMed DOI PMC
Danish S., Younis U., Akhtar N., Ameer A., Ijaz M., Nasreen S., Huma F., Sharif S., Ehsanullah M. Phosphorus solubilizing bacteria and rice straw biochar consequence on maize pigments synthesis. Int. J. Biosci. 2015;5:31–39.
Younis U., Danish S., Shah M.H.R., Malik S.A. Nutrient shifts modeling in Spinacea oleracea L. and Trigonella corniculata L. in contaminated soil amended with biochar. Int. J. Biosci. 2014;5:89–98.
Danish S., Zafar-ul-Hye M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019;9:5999. doi: 10.1038/s41598-019-42374-9. PubMed DOI PMC
Sultan H., Ahmed N., Mubashir M., Danish S. Chemical production of acidified activated carbon and its influences on soil fertility comparative to thermo-pyrolyzed biochar. Sci. Rep. 2020;10:595. doi: 10.1038/s41598-020-57535-4. PubMed DOI PMC
Zafar-ul-Hye M., Tahzeeb-ul-Hassan M., Abid M., Fahad S., Brtnicky M., Dokulilova T., Datta R., Danish S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020;10:69183. doi: 10.1038/s41598-020-69183-9. PubMed DOI PMC
Izhar Shafi M., Adnan M., Fahad S., Wahid F., Khan A., Yue Z., Danish S., Zafar-ul-Hye M., Brtnicky M., Datta R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy. 2020;10:1224. doi: 10.3390/agronomy10091224. DOI
Adnan M., Fahad S., Zamin M., Shah S., Mian I.A., Danish S., Zafar-Ul-hye M., Battaglia M.L., Naz R.M.M., Saeed B., et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants. 2020;9:900. doi: 10.3390/plants9070900. PubMed DOI PMC
Ling F., Silberbush M. Response of maize to foliar vs. soil application of nitrogen-phosphorus-potassium fertilizers. J. Plant Nutr. 2002;25:2333–2342. doi: 10.1081/PLN-120014698. DOI
Bibi F., Ahmad I., Bakhsh A., Kiran S., Danish S., Ullah H. Effect of Foliar Application of Boron with Calcium and Potassium on Quality and Yield of Mango cv. Summer Bahisht (SB) Chaunsa. Open Agric. 2019;4:98–106. doi: 10.1515/opag-2019-0009. DOI
Danish S., Kiran S., Fahad S., Ahmad N., Ali M.A., Tahir F.A., Rasheed M.K., Shahzad K., Li X., Wang D., et al. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2019;185:109706. doi: 10.1016/j.ecoenv.2019.109706. PubMed DOI
Fageria N.K., Filho M.P.B., Moreira A., Guimarães C.M. Foliar fertilization of crop plants. J. Plant. Nutr. 2009;32:1044–1064. doi: 10.1080/01904160902872826. DOI
Halo B. Effect of foliar application of phosphorus salt on yellowing of wheat seedlings. J. Res. Assam Agric. Univ. 1980;1:108–109.
Silberstein O., Wittwer S.H. Proceedings of the American Society for Horticultural Science. Volume 58. American Society for Horticultural Science; College Park, MD, USA: 1951. Foliar application of phosphatic nutrients to vegetable crops; pp. 179–190.
Dixon R.C. Foliar fertilization improves nutrient use efficiency. Fluid J. 2003;11:22–23.
Ali M.S., Sutradhar A., Edano M.L., Edwards J.T., Girma K. Response of winter wheat grain yield and phosphorus uptake to foliar phosphite fertilization. Int. J. Agron. 2014;2014:801626. doi: 10.1155/2014/801626. DOI
Benbella M., Paulsen G.M. Efficacy of treatments for delaying senescence of wheat leaves: II. Senescence and grain yield under field conditions. Agron. J. 1998;90:332–338. doi: 10.2134/agronj1998.00021962009000030004x. DOI
Girma K., Martin K.L., Freeman K.W., Mosali J., Teal R.K., Raun W.R., Moges S.M., Arnall D.B. Determination of optimum rate and growth stage for foliar-applied phosphorus in corn. Commun. Soil Sci. Plant Anal. 2007;38:1137–1154. doi: 10.1080/00103620701328016. DOI
Mosali J., Desta K., Teal R.K., Freeman K.W., Martin K.L., Lawles J.W., Raun W.R. Effect of foliar application of phosphorus on winter wheat grain yield, phosphorus uptake, and use efficiency. J. Plant Nutr. 2006;29:2147–2163. doi: 10.1080/01904160600972811. DOI
Arif M., Chohan M.A., Ali S., Gul R., Khan S. Response of wheat to foliar application of nutrients. J. Agric. Biol. Sci. 2006;1:30–34.
Wahid F., Sharif M., Fahad S., Adnan M., Khan I.A., Aksoy E., Ali A., Sultan T., Alam M., Saeed M., et al. Arbuscular mycorrhizal fungi improve the growth and phosphorus uptake of mung bean plants fertilized with composted rock phosphate fed dung in alkaline soil environment. J. Plant Nutr. 2019;42:1760–1769. doi: 10.1080/01904167.2019.1643371. DOI
Wahid F., Fahad S., Danish S., Adnan M., Yue Z., Saud S., Siddiqui M.H., Brtnicky M., Hammerschmiedt T., Datta R. Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture. 2020;10:334. doi: 10.3390/agriculture10080334. DOI
Singaram P., Kothandaraman G.V. Studies on residual, direct and cumulative effect of phosphorus sources on the availability, content and uptake of phosphorus and yield of maize. Madras Agric. J. 1994;81:425–429.
Soylu S., Sade B., Topal A., Akgün N., Gezgin S., Hakki E.E., Babaoǧlu M. Responses of irrigated durum and bread wheat cultivars to boron application in a low boron calcareous soil. Turk. J. Agric. For. 2005;29:275–286.
Kenbaev B., Sade B. Response of field-grown barley cultivars grown on zinc-deficient soil to zinc application. Commun. Soil Sci. Plant Anal. 2002;33:533–544. doi: 10.1081/CSS-120002762. DOI
Sharma J.P., Sharma U.C. Effect of nitrogen and phosphorus on the yield and severity of turcicum blight of maize in Nagaland. Indian Phytopathol. 1991;44:383–385.
Maqsood M., Abid A.M., Iqbal A., Hussain M.I. Effect of variable rate of nitrogen and phosphorus on growth and yield of maize (golden) Online J. Biol. Sci. 2001;1:19–20.
Arain A.S., Alam S.M., Tunio A.K.G. Performance of maize genotypes under varying NP-fertilizer environments. Sarhad J. Agric. 1989;5:623–626.
Gooding M.J., Davies W.P. Foliar urea fertilization of cereals: A review. Fertil. Res. 1992;32:209–222. doi: 10.1007/BF01048783. DOI
Seth J., Mosluh K.I. Erefects of urea spray on wheat in Iraq. Exp. Agric. 1981;17:333–336. doi: 10.1017/S0014479700011704. DOI
Fareed M.K. Mastes’s Thesis. University of Agriculture Faisalabad; Faisalabad, Pakistan: 1996. Effect of Varying Fertilizer Rate and Plant Stand Density on Growth and Yield of Spring Maize.
Hussain M.Z., Rehman N., Khan M.A. Micronutrients status of Bannu basen soils. Sarhad J. Agric. 2006;22:150–157.
Yasir A.M., Khalil S.K., Jan M.T., Khan A.Z. Phenology, growth, and grain yield of maize as influenced by foliar applied urea at different growth stages. J. Plant Nutr. 2010;33:71–79.
Alston A.M. Effects of soil water content and foliar fertilization with nitrogen and phosphorus in late season on the yield and composition of wheat. Aust. J. Agric. Res. 1979;30:577–585. doi: 10.1071/AR9790577. DOI
Pandey S., Ghosh P.K., Ghosh S., De T.K., Maiti T.K. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 2013;51:11–17. doi: 10.1007/s12275-013-2330-7. PubMed DOI
Soleimani R. The effects of integrated application of micronutrient on wheat in low organic carbon conditions of alkaline soils of western Iran; Proceedings of the 18th World Congress of Soil Science; Philadelphia, PA, USA. 9–15 July 2006; p. 22.
Hamayun M., Khan S.A., Khan A.L., Shinwari Z.K., Ahmad N., Kim Y.H., Lee I.J. Effect of foliar and soil application of nitrogen, phosphorus and potassium on yield components of lentil. Pak. J. Bot. 2011;43:391–396.
Reuter D.J., Dyson C.B., Elliott D.E., Lewis D.C., Rudd C.L. An Appraisal of Soil Phosphorus Testing Data for Crops and Pastures in South Australia. Aust. J. Exp. Agric. 1995;35:979–995. doi: 10.1071/EA9950979. DOI
Poulsen K.H., Nagy R., Gao L.L., Smith S.E., Bucher M., Smith F.A., Jakobsen I. Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol. 2005;168:445–454. doi: 10.1111/j.1469-8137.2005.01523.x. PubMed DOI
Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press; San Diego, CA, USA: 1995.
Zameer Khan M., Muhammad S., Naeem M.A., Akhtar E., Khalid M. Response of some wheat (Triticum aestivum L.) varieties to foliar application of N & K under rainfed conditions. Pak. J. Bot. 2006;38:1027–1034.
Rafiullah, Khan M.J., Muhammad D. Foliar application of phosphorus to enhance phosphorus utilization and crop growth: A hydroponic study. Sarhad J. Agric. 2018;34:47–53.
Marfo T.D., Datta R., Vranová V., Ekielski A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition. Agriculture. 2019;9:228. doi: 10.3390/agriculture9100228. DOI
Yadav G.S., Datta R., Pathan S.I., Lal R., Meena R.S., Babu S., Das A., Bhowmik S.N., Datta M., Saha P., et al. Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)-rice system in North eastern region of India. Sustainability. 2017;9:1816. doi: 10.3390/su9101816. DOI
Marfo T.D., Datta R., Pathan S.I., Vranová V. Ecotone dynamics and stability from soil scientific point of view. Diversity. 2019;11:53. doi: 10.3390/d11040053. DOI
Chen Y., Zhou T., Zhang C., Wang K., Liu J., Lu J., Xu K. Rational phosphorus application facilitates the sustainability of the wheat/maize/soybean relay strip intercropping system. PLoS ONE. 2015;10:e0141725. doi: 10.1371/journal.pone.0141725. PubMed DOI PMC
Kuo S.P. In: Methods of Soil Analysis Part 3: Chemical Methods. Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E., editors. John Wiley & Sons, Ltd.; Madison, WI, USA: 1996. pp. 869–919.
Benton J.J., Wolf B., Jr., Mills H.A. Mills Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Interpretation Guide. 1st ed. Micro-Macro Publishing Inc.; Athens, GA, USA: 1991.
Bremner M. Chapter 37: Nitrogen-Total. Methods Soil Anal. Part 3 Chem. Methods-SSSA B Ser. 1996;5:1085–1121.
Soltanpour P.N. Determination of Nutrient Availability and Elemental Toxicity by AB-DTPA Soil Test and ICPS. In: Stewart B.A., editor. Advances in Soil Science. Volume 16. Springer; New York, NY, USA: 1991. pp. 165–190.
Walkley A. An Examination of Methods for Determining Organic Carbon and Nitrogen in Soils. J. Agric. Sci. 1935;25:598. doi: 10.1017/S0021859600019687. DOI
Nelson D.W., Sommers L.E. Total Carbon, Organic Carbon, and Organic Matter. In: Page A.L., editor. Methods of Soil Analysis. John Wiley & Sons, Ltd.; Madison, WI, USA: 1996. pp. 916–1010. Part 2.
Thomas G.W. Methods of Soil Analysis, Part 3: Chemical Methods. Volume 5. John Wiley & Sons; Madison, WI, USA: 1996. Soil pH and soil acidity; pp. 475–490.
Soltanpour P.N., Schwab A.P. A new soil test for simultaneous extraction of macroand micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 1977;8:195–207. doi: 10.1080/00103627709366714. DOI
Steel R.G., Torrie J.H., Dickey D.A. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. McGraw Hill Book International Co.; Singapore: 1997.
Effect of Nitrogen in Combination with Different Levels of Sulfur on Wheat Growth and Yield
Proteomic changes in various plant tissues associated with chromium stress in sunflower