Effect of Nitrogen in Combination with Different Levels of Sulfur on Wheat Growth and Yield

. 2023 Jan 10 ; 8 (1) : 279-288. [epub] 20221226

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36643484

As macronutrients, management of nitrogen (N) and sulfur (S) is prime in importance when wheat is cultivated. Both have a significant impact on the improvement of growth and yield attributes. In addition, S and N also play an imperative role in the enhancement of seed protein contents. However, the need of the time is the selection of their optimum application rate for the achievement of maximum wheat productivity. That is why the current study was planned to examine the impact of variable application rates of S and N on wheat. There are 12 treatments, i.e., control (no nitrogen (0N) + no sulfur (0S)), 40 kg/ha N (40N + 0S), 80 kg/ha N (80N + 0S), 120 kg/ha N (120N + 0S), 30 kg/ha sulfur (30S), 40N + 30S, 80N + 30S, 120N + 30S, 60 kg/ha sulfur (60S), 40N + 60S, 80N + 60S, and 120N + 60S, applied in three replications. The results showed that plant height, grains/spike, spike/m2, and 1000 grain weight were significantly improved by the addition of 120N + 60S. A significant enhancement of grain N contents, N uptake, and protein contents of wheat validated the efficient role of 120N + 60S over 0N and 0S. In conclusion, 120N + 60S is a better treatment for the achievement of maximum wheat yield. More investigations under variable soil textures and climatic conditions are suggested under different climates to declare 120N + 60S as the best amendment for wheat growth and yield improvement.

Zobrazit více v PubMed

Shewry P. R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. 10.1093/jxb/erp058. PubMed DOI

Souza E. J.; Martin J. M.; Guttieri M. J.; O’Brien K. M.; Habernicht D. K.; Lanning S. P.; McLean R.; Carlson G. R.; Talbert L. E. Influence of Genotype, Environment, and Nitrogen Management on Spring Wheat Quality. Crop Sci. 2004, 44, 425–432. 10.2135/cropsci2004.4250. DOI

Farooq N.; Sarwar G.; Abbas T.; Bessely L.; Nadeem M. A.; Javaid M. M.; Matloob A.; Naseem M.; Ikram N. A. Effect of Drying-Rewetting Durations in Combination with Synthetic Fertilizers and Crop Residues on Soil Fertility and Maize Production. Pak. J. Bot. 2020, 52, 2051–2058. 10.30848/PJB2020-6(37). DOI

Panhwar Q. A.; Ali A.; Depar N.; Memon M. Y. Influence of Phosphatic Fertilizer on Growth, Yield and Bacterial Abundance in Rice (Oryza sativa L.) Genotypes. Pak. J. Bot. 2021, 53, 293–300. 10.30848/PJB2021-1(3). DOI

Shaikh T. A.; Soomro A. A.; Laghari G. M.; Rajpar I.; Majeedano I. Impact of Integrated Row Spacing, Fertilizer Application Methods and Sowing Dates on Bioethanol Production in Sorghum. Pak. J. Bot. 2021, 53, 1007–1013. 10.30848/PJB2021-3(1). DOI

Branlard G.; Dardevet M.; Saccomano R.; Lagoutte F.; Gourdon J. Genetic Diversity of Wheat Storage Proteins and Bread Wheat Quality. Euphytica 2001, 119, 59–67. 10.1023/A:1017586220359. DOI

Gupta R.; Meghwal M.; Prabhakar P. K. Bioactive Compounds of Pigmented Wheat (Triticum aestivum): Potential Benefits in Human Health. Trends Food Sci. Technol. 2021, 110, 240–252. 10.1016/j.tifs.2021.02.003. DOI

Wahid F.; Fahad S.; Danish S.; Adnan M.; Yue Z.; Saud S.; Siddiqui M. H.; Brtnicky M.; Hammerschmiedt T.; Datta R. Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils. Agriculture 2020, 10, 33410.3390/agriculture10080334. DOI

Rafiullah; Khan M. J.; Muhammad D.; Fahad S.; Adnan M.; Wahid F.; Alamri S.; Khan F.; Dawar K. M.; Irshad I.; Danish S.; Arif M.; Amanullah; Saud S.; Khan B.; Mian I. A.; Datta R.; Zarei T.; Shah A. A.; Ramzan M.; Zafar-ul-Hye M.; Mussarat M.; Siddiqui M. H. Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops. Plants 2020, 9, 138910.3390/plants9101389. PubMed DOI PMC

Danish S.; Zafar-ul-Hye M. Co-Application of ACC-Deaminase Producing PGPR and Timber-Waste Biochar Improves Pigments Formation, Growth and Yield of Wheat under Drought Stress. Sci. Rep. 2019, 9, 599910.1038/s41598-019-42374-9. PubMed DOI PMC

Danish S.; Zafar-ul-Hye M.; Fahad S.; Saud S.; Brtnicky M.; Hammerschmiedt T.; Datta R. Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize. Sustainability 2020, 12, 628610.3390/SU12156286. DOI

Ghafoor I.; Habib-ur-Rahman M.; Ali M.; Afzal M.; Ahmed W.; Gaiser T.; Ghaffar A. Slow-Release Nitrogen Fertilizers Enhance Growth, Yield, NUE in Wheat Crop and Reduce Nitrogen Losses under an Arid Environment. Environ. Sci. Pollut. Res. 2021, 28, 43528–43543. 10.1007/s11356-021-13700-4. PubMed DOI PMC

Prieto K. R.; Echaide-Aquino F.; Huerta-Robles A.; Valério H. P.; Macedo-Raygoza G.; Prado F. M.; Medeiros M. H. G.; Brito H. F.; da Silva I. G. N.; Felinto M. C. F. C.. et al.Endophytic Bacteria and Rare Earth Elements; Promising Candidates for Nutrient Use Efficiency in Plants. In Plant Macronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants; Hossain M. A.; Kamiya T.; Burritt D. J.; Tran L.-S. P.; Fujiwara T., Eds.; Elsevier, 2017; pp 285–306.

Panhwar Q. A.; Ali A.; Naher U. A.; Memon M. Y.. Fertilizer Management Strategies for Enhancing Nutrient Use Efficiency and Sustainable Wheat Production. In Organic Farming: Global Perspectives and Methods; Chandran S.; Unni M. R.; Thomas S., Eds.; Elsevier Inc., 2019; pp 17–39.

Khalofah A.; Khan M. I.; Arif M.; Hussain A.; Ullah R.; Irfan M.; Mahpara S.; Shah R. U.; Ansari M. J.; Kintl A.; et al. Deep Placement of Nitrogen Fertilizer Improves Yield, Nitrogen Use Efficiency and Economic Returns of Transplanted Fine Rice. PLoS One 2021, 16, e024752910.1371/journal.pone.0247529. PubMed DOI PMC

Zhang L.; Zhang W.; Cui Z.; Hu Y.; Schmidhalter U.; Chen X. Environmental, Human Health, and Ecosystem Economic Performance of Long-Term Optimizing Nitrogen Management for Wheat Production. J. Clean. Prod. 2021, 311, 12762010.1016/j.jclepro.2021.127620. DOI

Zhang Z.; Yu Z.; Zhang Y.; Shi Y. Optimized Nitrogen Fertilizer Application Strategies under Supplementary Irrigation Improved Winter Wheat (Triticum aestivum L.) Yield and Grain Protein Yield. PeerJ 2021, 9, e1146710.7717/peerj.11467. PubMed DOI PMC

Ahmad A.; Abraham G.; Gandotra N.; Abrol Y. P.; Abdin M. Z. Interactive Effect of Nitrogen and Sulphur on Growth and Yield of Rape-Seed-Mustard (Brassica juncea L. Czern. and Coss. and Brassica campestris L.) Genotypes. J. Agron. Crop Sci. 1998, 181, 193–199. 10.1111/j.1439-037X.1998.tb00417.x. DOI

Hell R. Molecular Physiology of Plant Sulfur Metabolism. Planta 1997, 202, 138–148. 10.1007/s004250050112. PubMed DOI

Ragab G.; Saad-Allah K. Seed Priming with Greenly Synthesized Sulfur Nanoparticles Enhances Antioxidative Defense Machinery and Restricts Oxidative Injury under Manganese Stress in Helianthus annuus (L.) Seedlings. J. Plant Growth Regul. 2021, 40, 1894–1902. 10.1007/s00344-020-10240-y. DOI

Assefa S.; Haile W.; Tena W. Effects of Phosphorus and Sulfur on Yield and Nutrient Uptake of Wheat (Triticum aestivum L.) on Vertisols, North Central, Ethiopia. Heliyon 2021, 7, e0661410.1016/j.heliyon.2021.e06614. PubMed DOI PMC

Dawar K.; Khan N.; Fahad S.; Alam S. S.; Khan S.; Mian I. A.; Akbar W. A. Effect of Sulfur and Zinc Nutrition on Yield and Uptake by Wheat. J. Plant Growth Regul. 2021, 2338–2346. 10.1007/s00344-021-10440-0. DOI

Wang Q.; Zhang Y.; Wu H.; Xu N.; Li A. Effects of Sulfur Limitation on Nitrogen and Sulfur Uptake and Lipid Accumulation in Scenedesmus acuminatus. J. Appl. Phycol. 2021, 33, 301–311. 10.1007/s10811-020-02319-6. DOI

Bos C.; Juillet B.; Fouillet H.; Turlan L.; Daré S.; Luengo C.; N’tounda R.; Benamouzig R.; Gausserès N.; Tomè D.; Gaudichon C. Postprandial Metabolic Utilization of Wheat Protein in Humans. Am. J. Clin. Nutr. 2005, 81, 87–94. 10.1093/ajcn/81.1.87. PubMed DOI

Shiferaw B.; Smale M.; Braun H.-J.; Duveiller E.; Reynolds M.; Muricho G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Secur. 2013, 5, 291–317. 10.1007/s12571-013-0263-y. DOI

Alharbi S.; Majrashi A.; Ghoneim A. M.; Ali E. F.; Modahish A. S.; Hassan F. A. S.; Eissa M. A. A New Method to Recycle Dairy Waste for the Nutrition of Wheat Plants. Agronomy 2021, 11, 84010.3390/agronomy11050840. DOI

Biel W.; Jaroszewska A.; Stankowski S.; Sobolewska M.; Kępińska-Pacelik J. Comparison of Yield, Chemical Composition and Farinograph Properties of Common and Ancient Wheat Grains. Eur. Food Res. Technol. 2021, 247, 1525–1538. 10.1007/s00217-021-03729-7. DOI

Ahmad Z.; Waraich E. A.; Akhtar S.; Anjum S.; Ahmad T.; Mahboob W.; Hafeez O. B. A.; Tapera T.; Labuschagne M.; Rizwan M. Physiological Responses of Wheat to Drought Stress and Its Mitigation Approaches. Acta Physiol. Plant. 2018, 40, 8010.1007/s11738-018-2651-6. DOI

Kiliç H.; Yağbasanlar T. The Effect of Drought Stress on Grain Yield, Yield Components and Some Quality Traits of Durum Wheat (Triticum turgidum Ssp. Durum) Cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 164–170. 10.15835/nbha3814274. DOI

Waraich E. A.; Ahmad R.; Saifullah; Ashraf M. Y.; Ehsanullah Role of Mineral Nutrition in Alleviation of Drought Stress in Plants. Aust. J. Crop Sci. 2011, 5, 764–777.

Petersen R. G.; Calvin L. D.. Sampling. In Methods of Soil Analysis: Part 1 Physical and Mineralaogical Methods, 5.1; Klute A., Ed.; John Wiley & Sons, Inc., 1986; pp 33–51.

Gee G. W.; Bauder J. W.. Particle-Size Analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Klute A., Ed.; John Wiley & Sons, Inc.: Madison, 1986; pp 383–411.

McLean E. O.Soil pH and Lime Requirement. In Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties; Page A. L., Ed.; John Wiley & Sons, Inc., 1982; Vol. 9, pp 199–224.

Rhoades J. D.Salinity: Electrical Conductivity and Total Dissolved Solids. In Methods of Soil Analysis, Part 3, Chemical Methods; Sparks D. L.; Page A. L.; Helmke P. A.; Loeppert R. H.; Soltanpour P. N.; Tabatabai M. A.; Johnston C. T.; Sumner M. E., Eds.; John Wiley & Sons, Inc.: Madison, WI, 1996; Vol. 5, pp 417–435.

Nelson D. W.; Sommers L. E.. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page A. L., Ed.; John Wiley & Sons, Inc.: Madison, WI, 1982; pp 539–579.

Bremner J. M.Nitrogen-Total. In Methods of Soil Analysis Part 3. Chemical Methods; Sparks D. L.; Page A. L.; Helmke P. A.; Loeppert R. H.; Soltanpour P. N.; Tabatabai M. A.; Johnston C. T.; Sumner M. E., Eds.; SSSA Book Series; John Wiley & Sons, Inc.: Madison, WI, 1996; pp 1085–1121.

Kuo S.Phosphorus. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks D. L.; Page A. L.; Helmke P. A.; Loeppert R. H.; Soltanpour P. N.; Tabatabai M. A.; Johnston C. T.; Sumner M. E., Eds.; John Wiley & Sons, Ltd.: Madison, Wisconsin, 1996; pp 869–919.

Bardsley C. E.; Lancaster J. D. Determination of Reserve Sulfur and Soluble Sulfates in Soils. Soil Sci. Soc. Am. J. 1960, 24, 265–268. 10.2136/sssaj1960.03615995002400040015x. DOI

Dhillon J.; Dhital S.; Lynch T.; Figueiredo B.; Omara P.; Raun W. R. In-Season Application of Nitrogen and Sulfur in Winter Wheat. Agrosyst., Geosci. Environ. 2019, 2, 18004710.2134/age2018.10.0047. DOI

Belete F.; Dechassa N.; Molla A.; Tana T. Effect of Split Application of Different N Rates on Productivity and Nitrogen Use Efficiency of Bread Wheat (Triticum aestivum L.). Agric. Food Secur. 2018, 7, 9210.1186/s40066-018-0242-9. DOI

Assefa S.; Haile W.; Tena W. Response of Bread Wheat to Sulfur and Phosphorus Fertilizers in the North Central Ethiopia. Agric. Food Secur. 2021, 10, 1–10. 10.1186/s40066-021-00303-y. DOI

Terefie A. A. Response of Sulphur Fertilizer Application to Bread Wheat (Triticum aestivum) Growth and Yield in Kulumsa, Arsi, Ethiopia. Asian J. Plant Sci. Res. 2021, 11, 10334.

Page A. L.; Miller R. H.; Keeny D. R.. Soil PH and Lime Requirement. Methods of Soil Analysis; American Society of Agronomy: Madison, 1982; pp 199–208.

Bremner J. M.; Mulvaney C. S.. Nitrogen–Total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page A. L.; Miller R. H.; Keeney D. R., Eds.; John Wiley & Sons, Ltd.: Madison, 1982; pp 595–624.

Richards L. A.Diagnosis and Improvement of Saline and Alkali Soils; U.S. Department of Agriculture: Washington, DC, 1954.

Jackson M. L.Soil Chemical Analysis; Prentice Hall Inc.: Englewood Cliffs, 1967.

Steel R. G.; Torrie J. H.; Dickey D. A.. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book International Co.: Singapore, 1997.

OriginLab Corporation . OriginPro; OriginLab: Northampton, MA, 2021.

Mandal N. N.; Chaudhry P. P.; Sinha D. Nitrogen, Phosphorus and Potash Uptake of Wheat (Var. Sonalika). Env. Eco 1992, 10, 297.

Asadi G. A.; Ghorbani R.; Khorramdel S.; Azizi G. Effects of Wheat Straw and Nitrogen Fertilizer on Yield and Yield Components of Garlic (Allium sativum L.). J. Agric. Sci. Sustainable Prod. 2014, 23, 157–168.

Varga B.; Svečnjak Z. The Effect of Late-Season Urea Spraying on Grain Yield and Quality of Winter Wheat Cultivars under Low and High Basal Nitrogen Fertilization. Field Crops Res. 2006, 96, 125–132. 10.1016/j.fcr.2005.06.001. DOI

Luo C.; Branlard G.; Griffin W. B.; McNeil D. L. The Effect of Nitrogen and Sulphur Fertilisation and Their Interaction with Genotype on Wheat Glutenins and Quality Parameters. J. Cereal Sci. 2000, 31, 185–194. 10.1006/jcrs.1999.0298. DOI

Akhtar M. M.Effect of Varying Levels of N on Growth and Yield Performance of Two New Wheat Cultivars; University of Agriculture Faislabad: Pakistan, 2001.

Šiaudinis G.; Lazauskas S.. et al. In The Effect of Nitrogen and Sulphur Fertilization on Tiller Formation and Grain Yield of Spring Wheat, Research for Rural Development: International Scientific Conference Proceedings, Jelgava, Latvia, 19–22 May, 2005 2005; pp 15–18.

Fismes J.; Vong P. C.; Guckert A.; Frossard E. Influence of Sulfur on Apparent N-Use Efficiency, Yield and Quality of Oilseed Rape (Brassica napus L.) Grown on a Calcareous Soil. Eur. J. Agron. 2000, 12, 127–141. 10.1016/S1161-0301(99)00052-0. DOI

Khandkar U. R.; Shinde D. A. Phosphorus Nutrition of Black Gram as Influenced by P and S Application. J. Indian Soc. Soil Sci. 1991, 39, 583–585.

Haneklaus S.; Paulsen H. M.; Gupta A. K.; Bloem E.; Schnug E. In Influence of Sulfur Fertilization on Yield and Quality of Oilseed Rape and Mustard, Proceedings of the 10th International Rapeseed Congress, 1999; pp 26–29.

Karasu A. Effect of Nitrogen Levels on Grain Yield and Some Attributes of Some Hybrid Maize Cultivars (Zea mays Indentata Sturt.) Grown for Silage as Second Crop. Bulg. J. Agric. Sci. 2012, 18, 42–48.

Taalab A. S.; Hellal F. A.; Abou-Seeda M. A. Influence of Phosphate Fertilizers Enriched with Sulfur on Phosphorus Availability and Corn Yield in Calcareous Soil in Arid Region. Ozean J. Appl. Sci. 2008, 1, 105.

Stewart W. M.Sulfur—The 4th Major Nutrient; IPNI Plant Nutrition TODAY, 2022. https://nutrientstewardship.org/implementation/sulfur-the-4th-major-nutrient/#:~:text=Sulfur.

Garrido-Lestache E.; López-Bellido R. J.; López-Bellido L. Durum Wheat Quality under Mediterranean Conditions as Affected by N Rate, Timing and Splitting, N Form and S Fertilization. Eur. J. Agron. 2005, 23, 265–278. 10.1016/j.eja.2004.12.001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...