The effect of nitrogen-sulphur fertilizer with nitrification inhibitor on winter wheat (Triticum aestivum L.) nutrition
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38994108
PubMed Central
PMC11238055
DOI
10.1016/j.heliyon.2024.e33035
PII: S2405-8440(24)09066-2
Knihovny.cz E-zdroje
- Klíčová slova
- Grain yield, Inhibitor of nitrification, Nitrogen, Sulphur, Winter wheat,
- Publikační typ
- časopisecké články MeSH
The high input of nitrogen is often required in today's agriculture, especially for the most cultivated crops largely involved in human and animal nutrition, such as winter wheat. Nitrogen is a mobile nutrient in the soil, and the high doses of N are often associated with possible losses through volatilization or leaching. One of the possible options to increase nitrogen use efficiency is the application of fertilizers with inhibitors. The main objective of the presented three-year experiment established under the field conditions at the two experimental sites was to examine the effect of nitrogen-sulphur fertilizer (ammonium nitrate sulphate) with the inhibitors of nitrification (IN) (dicyandiamide and 1,2,4 triazole). In addition to the nitrogen content in two forms, this fertilizer also contains sulphur, which can possibly enhance the utilization of nitrogen due to their well-known synergy. The treatments included in the experiment were: 1. Unfertilized, 2. N technology 3. N + S technology and 4. N + S + IN. The total dose of applied N for every fertilized treatment was 159 kg/ha. Treatments 2 and 3 were fertilized with three split doses of N, treatment 4 was fertilized only two times due to the addition of IN (a higher dose of fertilizer in the second application). The results obtained from the three-year experiment showed a significantly higher yield of grain (8.18 t/ha) after the fertilization with N + S + IN in comparison with N + S (7.67 t/ha) and N (7.61 t/ha), which proved the positive effect of IN on nitrogen use efficiency during the vegetation. The differences between qualitative parameters of wheat grain (hectolitre weight, protein and gluten content) were evaluated as statistically insignificant for each fertilized treatment. This similar result is likely due to the IN application, which provided a continuous nitrogen supply during vegetation comparable to the three split nitrogen applications. Thus, our results showed, that the addition of IN to the higher dose of fertilizer applied earlier in the vegetation can provide comparable results in terms of quality to the technologies based on three split fertilizations. The three-year experiment established at two experimental sites has proved, that the application of ammonium sulphate nitrate fertilizers with IN in a higher dose is a better option to the commonly used nitrogen technology, which was also supported by the economic evaluation and the highest net profit.
Zobrazit více v PubMed
IFA . 2023. Consumption Nitrogen World.https://www.ifastat.org/market-outlooks
Wang X., Bai J., Xie T., Wang W., Zhang G., Yin S., Wang D. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: a review. Ecotoxicol. Environ. Saf. 2021;220 doi: 10.1016/j.ecoenv.2021.112338. PubMed DOI
Mohammed Y.A., Kelly J., Chim B.K., Rutto E., Waldschmidt K., Mullock J., Torres G., Desta K.G., Raun W. Nitrogen fertilizer management for improved grain quality and yield in winter wheat in Oklahoma. J. Plant Nutr. 2013;36:749–761. doi: 10.1080/01904167.2012.754039. DOI
Chen D., Suter H., Islam A., Edis R., Freney J.R., Walker C.N. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res. 2008;46:289. doi: 10.1071/SR07197. DOI
Tian Z., Liu X., Yu J., Gu S., Zhang L., Jiang D., Cao W., Dai T. Early nitrogen deficiency favors high nitrogen recovery efficiency by improving deeper soil root growth and reducing nitrogen loss in wheat. Arch. Agron Soil Sci. 2020;66:1384–1398. doi: 10.1080/03650340.2019.1671972. DOI
Dawar K., Sardar K., Zaman M., Muller C., Sanz-Cobena A., Khan A., Borzouei A., Pérez-Castillo A.G. Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions. Pedosphere. 2021;31:323–331. doi: 10.1016/S1002-0160(20)60076-5. DOI
Zhang X., Davidson E.A., Mauzerall D.L., Searchinger T.D., Dumas P., Shen Y. Managing nitrogen for sustainable development. Nature. 2015;528:51–59. doi: 10.1038/nature15743. PubMed DOI
Wiesler F. Comparative assessment of the efficacy of various nitrogen fertilizers. J. Crop Prod. 1998;1:81–114. doi: 10.1300/J144v01n02_04. DOI
Santillano-Cázares J., Núñez-Ramírez F., Ruíz-Alvarado C., Cárdenas-Castañeda M., Ortiz-Monasterio I. Assessment of fertilizer management strategies aiming to increase nitrogen use efficiency of wheat grown under conservation agriculture. Agronomy. 2018;8:304. doi: 10.3390/agronomy8120304. DOI
He T., Liu D., Yuan J., Luo J., Lindsey S., Bolan N., Ding W. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Sci. Total Environ. 2018;628–629:121–130. doi: 10.1016/J.SCITOTENV.2018.02.048. PubMed DOI
Wu D., Cárdenas L.M., Calvet S., Brüggemann N., Loick N., Liu S., Bol R. The effect of nitrification inhibitor on N2O, NO and N2 emissions under different soil moisture levels in a permanent grassland soil. Soil Biol. Biochem. 2017;113:153–160. doi: 10.1016/j.soilbio.2017.06.007. DOI
Cameron K.C., Di H.J., Moir J.L. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 2013;162:145–173. doi: 10.1111/aab.12014. DOI
Pilbeam D. In: Handbook of Plant Nutrition. second ed. Barker A., Pilbeam D., editors. CRC Press; Boca Raton: 2015. Nitrogen; pp. 17–65.
Umar W., Ayub M.A., ur Rehman M.Z., Ahmad H.R., Farooqi Z.U.R., Shahzad A., Rehman U., Mustafa A., Nadeem M. Nitrogen and phosphorus use efficiency in agroecosystems. Resources Use Efficiency in Agriculture. 2020:213–257. doi: 10.1007/978-981-15-6953-1_7. DOI
Fowler D., Coyle M., Skiba U., Sutton M.A., Cape J.N., Reis S., Sheppard L.J., Jenkins A., Grizzetti B., Galloway J.N., Vitousek P., Leach A., Bouwman A.F., Butterbach-Bahl K., Dentener F., Stevenson D., Amann M., Voss M. The global nitrogen cycle in the twenty-first century. Phil. Trans. Biol. Sci. 2013;368 doi: 10.1098/rstb.2013.0164. PubMed DOI PMC
Ravishankara A.R., Daniel J.S., Portmann R.W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science (1979) 2009;326:123–125. doi: 10.1126/science.1176985. PubMed DOI
Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S.M., Toulmin C. Food security: the challenge of feeding 9 billion people. Science (1979) 2010;327:812–818. doi: 10.1126/science.1185383. PubMed DOI
Coskun D., Britto D.T., Shi W., Kronzucker H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants. 2017;3 doi: 10.1038/nplants.2017.74. PubMed DOI
Subbarao G.V., Sahrawat K.L., Nakahara K., Ishikawa T., Kishii M., Rao I.M., Hash C.T., George T.S., Srinivasa Rao P., Nardi P., Bonnett D., Berry W., Suenaga K., Lata J.C. Biological nitrification inhibition—a novel strategy to regulate nitrification in agricultural systems. Adv. Agron. 2012;114:249–302. doi: 10.1016/B978-0-12-394275-3.00001-8. DOI
Schlesinger W.H. On the fate of anthropogenic nitrogen. Proc. Natl. Acad. Sci. USA. 2009;106:203–208. doi: 10.1073/pnas.0810193105. PubMed DOI PMC
Ray A., Nkwonta C., Forrestal P., Danaher M., Richards K., O'Callaghan T., Hogan S., Cummins E. Current knowledge on urease and nitrification inhibitors technology and their safety. Rev. Environ. Health. 2021;36:477–491. doi: 10.1515/reveh-2020-0088. PubMed DOI
Duff A.M., Forrestal P., Ikoyi I., Brennan F. Assessing the long-term impact of urease and nitrification inhibitor use on microbial community composition, diversity and function in grassland soil. Soil Biol. Biochem. 2022;170 doi: 10.1016/J.SOILBIO.2022.108709. DOI
Ruser R., Schulz R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. J. Plant Nutr. Soil Sci. 2015;178:171–188. doi: 10.1002/jpln.201400251. DOI
Cui L., Li D., Wu Z., Xue Y., Xiao F., Zhang L., Song Y., Li Y., Zheng Y., Zhang J., Cui Y. Effects of nitrification inhibitors on soil nitrification and ammonia volatilization in three soils with different pH. Agronomy. 2021;11:1674. doi: 10.3390/agronomy11081674. DOI
Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science (1979) 2008;320:889–892. doi: 10.1126/science.1136674. PubMed DOI
Škarpa P., Mikušová D., Antošovský J., Kučera M., Ryant P. Oil-based polymer coatings on CAN fertilizer in oilseed rape (Brassica napus L.) nutrition. Plants. 2021;10:1605. doi: 10.3390/plants10081605. PubMed DOI PMC
Salvagiotti F., Miralles D.J. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Eur. J. Agron. 2008;28:282–290. doi: 10.1016/J.EJA.2007.08.002. DOI
Dubousset L., Etienne P., Avice J.C. Is the remobilization of S and N reserves for seed filling of winter oilseed rape modulated by sulphate restrictions occurring at different growth stages? J. Exp. Bot. 2010;61:4313–4324. doi: 10.1093/jxb/erq233. PubMed DOI PMC
Tabak M., Lepiarczyk A., Filipek-Mazur B., Lisowska A. Efficiency of nitrogen fertilization of winter wheat depending on sulfur fertilization. Agronomy. 2020;10:1304. doi: 10.3390/agronomy10091304. DOI
Fismes J., Vong P.C., Guckert A., Frossard E. Influence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. Eur. J. Agron. 2000;12:127–141. doi: 10.1016/S1161-0301(99)00052-0. DOI
Järvan M., Edesi L., Adamson A. The content and quality of protein in winter wheat grains depending on sulphur fertilization. Acta Agric Scand B Soil Plant Sci. 2012;62:627–636. doi: 10.1080/09064710.2012.683495. DOI
Klikocka H., Cybulska M., Nowak A. Efficiency of fertilization and utilization of nitrogen and sulphur by spring wheat. Pol. J. Environ. Stud. 2017;26:2029–2036. doi: 10.15244/pjoes/69942. DOI
Feinberg A., Stenke A., Peter T., Hinckley E.-L.S., Driscoll C.T., Winkel L.H.E. Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Commun Earth Environ. 2021;2:101. doi: 10.1038/s43247-021-00172-0. DOI
Wilhelm Scherer H. Sulfur in soils. J. Plant Nutr. Soil Sci. 2009;172:326–335. doi: 10.1002/jpln.200900037. DOI
Kulhánek M., Balík J., Černý J., Sedlář O., Vašák F. Evaluating of soil sulfur forms changes under different fertilizing systems during long-term field experiments. Plant Soil Environ. 2016;62:408–415. doi: 10.17221/236/2016-PSE. DOI
Balík J., Kulhánek M., Černý J., Száková J., Pavlíková D., Čermák P. Differences in soil sulfur fractions due to limitation of atmospheric deposition. Plant Soil Environ. 2009;55:344–352. doi: 10.17221/101/2009-PSE. DOI
Lehmann J., Solomon D., Zhao F.-J., McGrath S.P. Atmospheric SO 2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils. Environ. Sci. Technol. 2008;42:3550–3555. doi: 10.1021/es702315g. PubMed DOI
Eriksen J. Gross sulphur mineralisation–immobilisation turnover in soil amended with plant residues. Soil Biol. Biochem. 2005;37:2216–2224. doi: 10.1016/J.SOILBIO.2005.04.003. DOI
Withers P.J.A., Tytherleigh A.R.J., O'Donnell F.M. Effect of sulphur fertilizers on the grain yield and sulphur content of cereals. J. Agric. Sci. 1995;125:317–324. doi: 10.1017/S0021859600084811. DOI
Naeem H.A., MacRitchie F. Sulphur in Plants. Springer Netherlands; Dordrecht: 2003. Effect of sulphur nutrition on agronomic and quality attributes of wheat; pp. 305–322. DOI
Schoenau J.J., Malhi S.S. Sulfur Forms and Cycling Processes in Soil and Their Relationship to Sulfur Fertility. 2015:1–10. doi: 10.2134/agronmonogr50.c1. DOI
Malhi S.S., Solberg E.D., Nyborg M. Influence of formulation of elemental S fertilizer on yield, quality and S uptake of canola seed. Can. J. Plant Sci. 2005;85:793–802. doi: 10.4141/P04-134. DOI
Salvagiotti F., Castellarín J.M., Miralles D.J., Pedrol H.M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res. 2009;113:170–177. doi: 10.1016/J.FCR.2009.05.003. DOI
McGrath S.P., Zhao F.J. A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use Manag. 1995;11:110–114. doi: 10.1111/j.1475-2743.1995.tb00507.x. DOI
Carciochi W.D., Divito G.A., Fernández L.A., Echeverría H.E. Sulfur affects root growth and improves nitrogen recovery and internal efficiency in wheat. J. Plant Nutr. 2017;40:1231–1242. doi: 10.1080/01904167.2016.1187740. DOI
Škarpa P., Antošovský J., Ryant P., Hammerschmiedt T., Kintl A., Brtnický M. Using waste sulfur from biogas production in combination with nitrogen fertilization of maize (Zea mays L.) by foliar application. Plants. 2021;10:2188. doi: 10.3390/plants10102188. PubMed DOI PMC
Tabak M., Lisowska A., Filipek-Mazur B. Bioavailability of sulfur from waste obtained during biogas desulfurization and the effect of sulfur on soil acidity and biological activity. Processes. 2020;8:863. doi: 10.3390/pr8070863. DOI
Zbíral J., Malý S., Váňa M. third ed. Central Institute for Supervising and Testing in Agriculture; Brno: 2011. Soil Analysis.
Lancashire P.D., Bleiholder H., Van Den Boom T., Langelduddeke P., Stauss R., Weber E., Witzenberger A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991;119:561–601. doi: 10.1111/j.1744-7348.1991.tb04895.x. DOI
Škarpa P., Klofáč D., Krčma F., Šimečková J., Kozáková Z. Effect of plasma activated water foliar application on selected growth parameters of maize (Zea mays L.) Water (Basel) 2020;12:3545. doi: 10.3390/w12123545. DOI
wei Tian Z., xue Liu X., lu Gu S., hong Yu J., Zhang L., wei Zhang W., Jiang D., xing Cao W., bo Dai T. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat. J. Integr. Agric. 2018;17:2648–2661. doi: 10.1016/S2095-3119(18)62086-6. DOI
Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. Efficiency of mineral nitrogen fertilization in winter wheat under pannonian climate conditions. Agriculture. 2020;10:541. doi: 10.3390/agriculture10110541. DOI
Azizian H., Kramer J.K.G., Winsborough S. Factors influencing the fatty acid determination in fats and oils using Fourier transform near‐infrared spectroscopy. Eur. J. Lipid Sci. Technol. 2007;109:960–968. doi: 10.1002/ejlt.200700062. DOI
Rodriguez-Saona L.E., Fry F.S., Calvey E.M. Use of fourier transform near-infrared reflectance spectroscopy for rapid quantification of Castor bean meal in a selection of flour-based products. J. Agric. Food Chem. 2000;48:5169–5177. doi: 10.1021/jf000604m. PubMed DOI
CIMMYT Economics Program . CIMMYT Economics Program. 1988. From agronomic data to farmer recommendations : an economics training manual; pp. 1–59. ISBN 968-6127-28-3.
Mohammed Y.A., Gesch R.W., Johnson J.M.F., Wagner S.W. Agronomic and economic evaluations of N fertilization in maize under recent market dynamics. Nitrogen. 2022;3:514–527. doi: 10.3390/nitrogen3030033. DOI
Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 2013;4 doi: 10.3389/fpsyg.2013.00863. PubMed DOI PMC
Dawar K., Khan A.A., Jahangir M.M.R., Mian I.A., Khan B., Ahmad B., Fahad S., Moustafa M., Al-Shehri M., Mubashir M., Datta R., Danish S. Effect of nitrogen in combination with different levels of sulfur on wheat growth and yield. ACS Omega. 2023;8:279–288. doi: 10.1021/acsomega.2c04054. PubMed DOI PMC
Di H.J., Cameron K.C., Podolyan A., Robinson A. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biol. Biochem. 2014;73:59–68. doi: 10.1016/J.SOILBIO.2014.02.011. DOI
Weiske A., Benckiser G., Herbert T., Ottow J. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol. Fertil. Soils. 2001;34:109–117. doi: 10.1007/s003740100386. DOI
Barth G., von Tucher S., Schmidhalter U. Influence of soil parameters on the effect of 3,4-dimethylpyrazole-phosphate as a nitrification inhibitor. Biol. Fertil. Soils. 2001;34:98–102. doi: 10.1007/s003740100382. DOI
Rahman N., Henke C., Forrestal P.J. Efficacy of the nitrification inhibitor 3,4 dimethylpyrazol succinic acid (DMPSA) when combined with calcium ammonium nitrate and ammonium sulphate—a soil incubation experiment. Agronomy. 2021;11:1334. doi: 10.3390/agronomy11071334. DOI
Duncan E.G., O'Sullivan C.A., Roper M.M., Peoples M.B., Treble K., Whisson K. Crop and microbial responses to the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in Mediterranean wheat-cropping systems. Soil Res. 2017;55:553. doi: 10.1071/SR16327. DOI
Shalmani M.M.A., Lakzian A., Khorassani R., Khavazi K., Zaman M. Interaction of different wheat genotypes and nitrification inhibitor 3,4-dimethylpyrazole phosphate using 15 N isotope tracing techniques. Commun. Soil Sci. Plant Anal. 2017;48:1247–1258. doi: 10.1080/00103624.2016.1261888. DOI
Bremner J.M., Bundy L.G. Inhibition of nitrification in soils by volatile sulfur compounds. Soil Biol. Biochem. 1974;6:161–165. doi: 10.1016/0038-0717(74)90021-2. DOI
Saad O.A.L.O., Lehmann S., Conrad R. Influence of thiosulfate on nitrification, denitrification, and production of nitric oxide and nitrous oxide in soil. Biol. Fertil. Soils. 1996;21:152–159. doi: 10.1007/BF00335927. DOI
Abit M.J.M., Shepherd L.M., Marburger D.A., Arnall D.B. On-farm winter wheat response to nitrogen-, phosphorus-, potassium-, and sulfur-rich strips in Oklahoma, crop. Forage & Turfgrass Management. 2017;3 doi: 10.2134/cftm2017.02.0014. cftm2017.02.0014. DOI
Sawyer J.E., Ebelhar S.A. Sulfur nutrition of winter wheat varieties with till and no‐till planting on highly weathered alfisol soils. Commun. Soil Sci. Plant Anal. 1995;26:1257–1271. doi: 10.1080/00103629509369368. DOI
Feyh R.L., Lamond R.E. Sulfur and nitrogen fertilization of winter wheat. J. Prod. Agric. 1992;5:488–491. doi: 10.2134/jpa1992.0488. DOI
Kulhánek M., Balík J., Černý J., Peklová L., Sedlář O. Winter wheat fertilizing using nitrogen–sulphur fertilizer. Arch. Agron Soil Sci. 2014;60:67–74. doi: 10.1080/03650340.2013.771260. DOI
Ercoli L., Lulli L., Arduini I., Mariotti M., Masoni A. Durum wheat grain yield and quality as affected by S rate under Mediterranean conditions. Eur. J. Agron. 2011;35:63–70. doi: 10.1016/j.eja.2011.03.007. DOI
Rehm G.W. Timing sulfur applications for corn (Zea mays L.) production on irrigated sandy soil. Commun. Soil Sci. Plant Anal. 1993;24:285–294. doi: 10.1080/00103629309368799. DOI
Eriksen J., Mortensen J.V. Effects of timing of sulphur application on yield, S-uptake and quality of barley. Plant Soil. 2002;242:283–289. doi: 10.1023/A:1016224209654. DOI
Grant C.A., Clayton G.W., Johnston A.M. Sulphur fertilizer and tillage effects on canola seed quality in the Black soil zone of western Canada. Can. J. Plant Sci. 2003;83:745–758. doi: 10.4141/P02-107. DOI
Ahmad A., Khan I., Anjum N.A.M., Diva I., Abdin M.Z., Iqbal M. Effect of timing of sulfur fertilizer application on growth and yield of rapeseed. J. Plant Nutr. 2005;28:1049–1059. doi: 10.1081/PLN-200058905. DOI
Habtegebrial K., Singh B.R. Effects of timing of nitrogen and sulphur fertilizers on yield, nitrogen, and sulphur contents of Tef (Eragrostis tef (Zucc.) Trotter) Nutrient Cycl. Agroecosyst. 2006;75:213–222. doi: 10.1007/s10705-006-9028-8. DOI
Khan M.O., Khan M.J., Khan M.A., Shafi M., Anwar S., Shah S. Wheat yield as affected by sources of sulfur and its time of application. Int. J. Biosci. 2019 doi: 10.12692/ijb/15.6.37-50. DOI
xin Xie Y., Zhang H., ji Zhu Y., Zhao L., heng Yyang J., na Cha F., Liu C., yang Wang C., cai Guo T. Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain. J. Integr. Agric. 2017;16:614–625. doi: 10.1016/S2095-3119(16)61481-8. DOI
Aula L., Dhillon J.S., Omara P., Wehmeyer G.B., Freeman K.W., Raun W.R. World sulfur use efficiency for cereal crops. Agron. J. 2019;111:2485–2492. doi: 10.2134/agronj2019.02.0095. DOI
Haque M.M., Saleque M.A., Shah A.L., Biswas J.C., Kim P.J. Long-term effects of sulfur and zinc fertilization on rice productivity and nutrient efficiency in double rice cropping paddy in Bangladesh. Commun. Soil Sci. Plant Anal. 2015;46:2877–2887. doi: 10.1080/00103624.2015.1104333. DOI
Gupta A.K., Jain N.K. Sulphur fertilization in a pearl millet (Pennisetum glaucum)-Indian mustard (Brassica juncea) cropping system. Arch. Agron Soil Sci. 2008;54:533–539. doi: 10.1080/03650340802280435. DOI
Singh Shivay Y., Prasad R., Pal M. Effect of levels and sources of sulfur on yield, sulfur and nitrogen concentration and uptake and S-use efficiency in basmati rice. Commun. Soil Sci. Plant Anal. 2014;45:2468–2479. doi: 10.1080/00103624.2014.941472. DOI
Singh S.P., Singh R., Singh M.P., Singh V.P. Impact of sulfur fertilization on different forms and balance of soil sulfur and the nutrition of wheat in wheat-soybean cropping sequence in tarai soil. J. Plant Nutr. 2014;37:618–632. doi: 10.1080/01904167.2013.867987. DOI
Smatanová M., Florián M. Pracovní postupy pro agrochemické zkoušení zemědělských půd v České republice v období 2023 až 2028. 2022. https://eagri.cz/public/web/file/714897/MP_c._01_AZZP_3vyd_fin.pdf
Dhillon J., Dhital S., Lynch T., Figueiredo B., Omara P., Raun W.R. In‐season application of nitrogen and sulfur in winter wheat, agrosystems. Geosciences & Environment. 2019;2:1–8. doi: 10.2134/age2018.10.0047. DOI
Mahal N.K., Sawyer J.E., Iqbal J., Sassman A.M., Mathur R., Castellano M.J. Role of sulfur mineralization and fertilizer source in corn and soybean production systems. Soil Sci. Soc. Am. J. 2022;86:1058–1071. doi: 10.1002/saj2.20417. DOI
Randall P., Spencer K., Freney J. Sulfur and nitrogen fertilizer effects on wheat. I. Concentrations of sulfur and nitrogen and the nitrogen to sulfur ratio in grain, in relation to the yield response. Aust. J. Agric. Res. 1981;32:203. doi: 10.1071/AR9810203. DOI
Chien S.H., Prochnow L.I., Cantarella H. Chapter 8 recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 2009;102:267–322. doi: 10.1016/S0065-2113(09)01008-6. DOI
Shalmani M.M.A., Lakzian A., Khorassani R., Zaman M., Feiziasl V., Borzouei A., Khodashenas Rudsari M., Naserian Khiabani B. Nitrification inhibitor application at stem elongation stage increases soil nitrogen availability and wheat nitrogen use efficiency under drought stress. Arch. Agron Soil Sci. 2022:1–18. doi: 10.1080/03650340.2022.2132387. DOI
Rao S.C. Evaluation of nitrification inhibitors and urea placement in No‐tillage winter wheat. Agron. J. 1996;88:904–908. doi: 10.2134/agronj1996.00021962003600060009x. DOI
Dawar K., Rahman U., Alam S.S., Tariq M., Khan A., Fahad S., Datta R., Danish S., Saud S., Noor M. Nitrification inhibitor and plant growth regulators improve wheat yield and nitrogen use efficiency. J. Plant Growth Regul. 2022;41:216–226. doi: 10.1007/s00344-020-10295-x. DOI
Pasda G., Hähndel R., Zerulla W. Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol. Fertil. Soils. 2001;34:85–97. doi: 10.1007/s003740100381. DOI
Villar J.M., Guillaumes E. Use of nitrification inhibitor DMPP to improve nitrogen recovery in irrigated wheat on a calcareous soil. Spanish J. Agric. Res. 2010;8:1218. doi: 10.5424/sjar/2010084-1241. DOI
Dawar K., Zaman M., Rowarth J.S., Blennerhassett J., Turnbull M.H. Urea hydrolysis and lateral and vertical movement in the soil: effects of urease inhibitor and irrigation. Biol. Fertil. Soils. 2011;47:139–146. doi: 10.1007/s00374-010-0515-3. DOI
Aulakh M.S., Not Available N.A., Doran J. Effects of 4-amino 1,2,4-triazole, dicyandiamide and encapsulated calcium carbide on nitrification inhibition in a subtropical soil under upland and flooded conditions. Biol. Fertil. Soils. 2001;33:258–263. doi: 10.1007/s003740000317. DOI
Polychronaki E., Douma C., Giourga C., Loumou A. Assessing nitrogen fertilization strategies in winter wheat and cotton crops in northern Greece. Pedosphere. 2012;22:689–697. doi: 10.1016/S1002-0160(12)60054-X. DOI
Carrasco I., Villar J.M. Plant Nutrition. Springer Netherlands; Dordrecht: 2001. Field evaluation of DMPP as a nitrification inhibitor in the area irrigated by the Canal d'Urgell (Northeast Spain) pp. 764–765. DOI
Arregui L.M., Quemada M. Strategies to improve nitrogen use efficiency in winter cereal crops under rainfed conditions. Agron. J. 2008;100:277–284. doi: 10.2134/agronj2007.0187. DOI
Wang H., Ma S., Shao G., Dittert K. Use of urease and nitrification inhibitors to decrease yield-scaled N2O emissions from winter wheat and oilseed rape fields: a two-year field experiment. Agric. Ecosyst. Environ. 2021;319 doi: 10.1016/J.AGEE.2021.107552. DOI
Johansson E., Prieto‐Linde M.L., Svensson G. Influence of nitrogen application rate and timing on grain protein composition and gluten strength in Swedish wheat cultivars. J. Plant Nutr. Soil Sci. 2004;167:345–350. doi: 10.1002/jpln.200320332. DOI
Jarrell W.M., Beverly R.B. The dilution effect in plant nutrition studies. 1981. DOI
Hoel B.O. Effects of sulphur application on grain yield and quality, and assessment of sulphur status in winter wheat (Triticum aestivum L.) Acta Agric Scand B Soil Plant Sci. 2011;61:499–507. doi: 10.1080/09064710.2010.510120. DOI
Habibullah H., Nelson K., Motavalli P. Management of nitrapyrin and pronitridine nitrification inhibitors with urea ammonium nitrate for winter wheat production. Agronomy. 2018;8:204. doi: 10.3390/agronomy8100204. DOI
Shahsavani S., Gholami A. Effect of sulphur fertilization on breadmaking quality of three winter wheat varieties. Pakistan J. Biol. Sci. 2008;11:2134–2138. doi: 10.3923/pjbs.2008.2134.2138. PubMed DOI
Klikocka H., Cybulska M., Barczak B., Narolski B., Szostak B., Kobiałka A., Nowak A., Wójcik E. The effect of sulphur and nitrogen fertilization on grain yield and technological quality of spring wheat. Plant Soil Environ. 2016;62:230–236. doi: 10.17221/18/2016-PSE. DOI
Steinfurth D., Zörb C., Braukmann F., Mühling K.H. Time-dependent distribution of sulphur, sulphate and glutathione in wheat tissues and grain as affected by three sulphur fertilization levels and late S fertilization. J. Plant Physiol. 2012;169:72–77. doi: 10.1016/J.JPLPH.2011.08.012. PubMed DOI
Zhao F.J., Salmon S.E., Withers P.J.A., Monaghan J.M., Evans E.J., Shewry P.R., McGrath S.P. Variation in the breadmaking quality and rheological properties of wheat in relation to sulphur nutrition under field conditions. J. Cereal. Sci. 1999;30:19–31. doi: 10.1006/JCRS.1998.0244. DOI
Erekul O., Götz K.-P., Koca Y.O. 2012. Effect of Sulphur and Nitrogen Fertilization on Bread-Making Quality of Wheat (Triticum aestivum L.) Varieties under Mediterranean Climate Conditions.
Kaiser D.E., Sutradhar A.K., Wiersma J.J. Do hard red spring wheat varieties vary in their response to sulfur? Agron. J. 2019;111:2422–2434. doi: 10.2134/agronj2018.12.0798. DOI
Blandino M., Vaccino P., Reyneri A. Late‐season nitrogen increases improver common and durum wheat quality. Agron. J. 2015;107:680–690. doi: 10.2134/agronj14.0405. DOI
Wieser H., Seilmeier W. The influence of nitrogen fertilisation on quantities and proportions of different protein types in wheat flour. J. Sci. Food Agric. 1998;76:49–55. doi: 10.1002/(SICI)1097-0010(199801)76:1<49::AID-JSFA950>3.0.CO;2-2. DOI
Phillips S.B., Mullins G.L. Foliar burn and wheat grain yield responses following topdress-applied nitrogen and sulfur fertilizers. J. Plant Nutr. 2004;27:921–930. doi: 10.1081/PLN-120030679. DOI
Školníková M., Škarpa P., Ryant P., Kozáková Z., Antošovský J. Response of winter wheat (Triticum aestivum L.) to fertilizers with nitrogen-transformation inhibitors and timing of their application under field conditions. Agronomy. 2022;12:223. doi: 10.3390/agronomy12010223. DOI
Liu C., Wang K., Zheng X. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat–maize cropping system. Biogeosciences. 2013;10:2427–2437. doi: 10.5194/bg-10-2427-2013. DOI
Huérfano X., Estavillo J.-M., Duñabeitia M.K., González-Moro M.-B., González-Murua C., Fuertes-Mendizábal T. Response of wheat storage proteins and breadmaking quality to dimethylpyrazole-based nitrification inhibitors under different nitrogen fertilization splitting strategies. Plants. 2021;10:703. doi: 10.3390/plants10040703. PubMed DOI PMC
Thapa R., Chatterjee A. Wheat production, nitrogen transformation, and nitrogen losses as affected by nitrification and double inhibitors. Agron. J. 2017;109:1825–1835. doi: 10.2134/agronj2016.07.0415. DOI
De Santis M.A., Giuliani M.M., Flagella Z., Reyneri A., Blandino M. Impact of nitrogen fertilisation strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crops Res. 2020;254 doi: 10.1016/J.FCR.2020.107829. DOI
Kaushik R., Kumar N., Sihag M.K., Ray A. Isolation, characterization of wheat gluten and its regeneration properties. J. Food Sci. Technol. 2015;52:5930–5937. doi: 10.1007/s13197-014-1690-2. PubMed DOI PMC
Kozlovský O., Balík J., Černý J., Kulhánek M., Kos M., Prášilová M. Influence of nitrogen fertilizer injection (CULTAN) on yield, yield components formation and quality of winter wheat grain. Plant Soil Environ. 2009;55:536–543. doi: 10.17221/165/2009-PSE. DOI
Zörb C., Steinfurth D., Seling S., LangenkÄmper G., Koehler P., Wieser H., Lindhauer M.G., Mühling K.H. Quantitative protein composition and baking quality of winter wheat as affected by late sulfur fertilization. J. Agric. Food Chem. 2009;57:3877–3885. doi: 10.1021/jf8038988. PubMed DOI
Wieser H., Gutser R., Von Tucher S. Influence of sulphur fertilisation on quantities and proportions of gluten protein types in wheat flour. J. Cereal. Sci. 2004;40:239–244. doi: 10.1016/J.JCS.2004.05.005. DOI
Xue C., auf’m Erley G.S., Rossmann A., Schuster R., Koehler P., Mühling K.-H. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00738. PubMed DOI PMC
Martre P., Jamieson P.D., Semenov M.A., Zyskowski R.F., Porter J.R., Triboi E. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. Eur. J. Agron. 2006;25:138–154. doi: 10.1016/J.EJA.2006.04.007. DOI