Oil-Based Polymer Coatings on CAN Fertilizer in Oilseed Rape (Brassica napus L.) Nutrition
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
34451650
PubMed Central
PMC8398497
DOI
10.3390/plants10081605
PII: plants10081605
Knihovny.cz E-resources
- Keywords
- control release fertilizer, nitrate leaching, nitrogen losses, oiliness, yield,
- Publication type
- Journal Article MeSH
Fertilizer coating can increase the efficiency of N fertilizers and reduce their negative impact on the environment. This may be achieved by the utilization of biodegradable natural coating materials instead of polyurethane-based polymers. The aim of this study was to detect the effect of calcium ammonium nitrate (CAN) fertilizer coated with modified conventional polyurethane enhanced with vegetable oils on the yield and quality of Brassica napus L. compared to CAN fertilizer with a vegetable oil-based polymer and to assess the risks of nitrogen loss. Three types of treatments were tested for both coated fertilizers: divided application (CAN, coated CAN), a single application of coated CAN, and a single application of CAN with coated CAN (1:2). A single application of coated CAN with both types of coating in the growth stage of the 9th true leaf significantly increased the yield, the thousand seed weight, and oil production compared to the uncoated CAN. The potential of using coated CAN may be seen in a slow nitrogen release ensuring the nitrogen demand for rapeseed plants throughout vegetation and eliminating the risk of its loss. The increased potential of NH4+ volatilization and NO3- leaching were determined using the uncoated CAN fertilizer compared to the coated variants. Oil-based polymer coatings on CAN fertilizer can be considered as an adequate replacement for partially modified conventional polyurethane.
Faculty of AgriSciences Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic
Research Institute of Chemical Technology Nobelova 34 836 03 Bratislava Slovakia
See more in PubMed
Gerbens-Leenes P., Nonhebel S., Ivens W. A method to determine land requirements relating to food consumption patterns. Agric. Ecosyst. Environ. 2002;90:47–58. doi: 10.1016/S0167-8809(01)00169-4. DOI
Jie C., Jing-Zhang C., Man-Zhi T. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002;12:243–252. doi: 10.1007/BF02837480. DOI
Brown M.E., Hintermann B., Higgins N. Markets, climate change, and food security in West Africa. Environ. Sci. Technol. 2009;43:8016–8020. doi: 10.1021/es901162d. PubMed DOI
Alexandratos N., Bruinsma J. World Agriculture towards 2030/2050: The 2012 Revision. FAO; Rome, Italy: 2012. p. 147. ESA Working Paper No. 12-03.
Ju X.T., Kou C.L., Zhang F.S., Christe P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 2006;143:117–125. doi: 10.1016/j.envpol.2005.11.005. PubMed DOI
Chien S.H., Prochnow L.I., Cantarella H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 2009;102:267–322.
Glass A.D.M. Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption. Crit. Rev. Plant. Sci. 2003;22:453–470. doi: 10.1080/07352680390243512. DOI
Parry M.A.J., Flexas J., Medrano H. Prospects forcrop production under drought: Research priorities and future directions. Ann. Appl. Biol. 2005;147:211–226. doi: 10.1111/j.1744-7348.2005.00032.x. DOI
Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant. Physiol. 2011;155:125–129. doi: 10.1104/pp.110.165076. PubMed DOI PMC
Peng S., Huang J., Zhong X., Yang J., Wang G., Zou Y., Zhang F., Zhu Q., Buresh R., Witt C. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric. Sci. China. 2002;1:776–785.
Spinelli D., Bardi L., Jez S., Basosi R. Environmental analysis of sunflower production with different forms of mineral nitrogen fertilizers. J. Environ. Manag. 2013;129:302–308. doi: 10.1016/j.jenvman.2013.07.029. PubMed DOI
World Fertilizer Trends and Outlook to 2020. [(accessed on 2 May 2021)]; Available online: http://www.fao.org/3/i6895e/i6895e.pdf.
World Fertilizer Trends and Outlook to 2022. [(accessed on 2 May 2021)]; Available online: http://www.fao.org/3/ca6746en/ca6746en.pdf.
Zhang X., Davidson E., Mauzerall D., Searchinger T.D., Dumas P., Shen Y. Managing nitrogen for sustainable development. Nature. 2015;528:51–59. doi: 10.1038/nature15743. PubMed DOI
Sharma L.K., Bali S.K. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability. 2017;10:51. doi: 10.3390/su10010051. DOI
Cameron K.C., Di H.J., Moir J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013;162:145–173. doi: 10.1111/aab.12014. DOI
Grizzetti B., Bouraoui F., Billen G., van Grinsven H., Cardoso A.C., Thieu V., Garnier J., Curtis C., Howarth R.W., Johnes P. Nitrogen as a threat to European water quality. In: Sutton M.A., Howard C.M., Erisman J.W., Billen G., Bleeker A., Grennfelt P., van Grinsven H., Grizzetti B., editors. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge University Press; Cambridge, UK: 2011. pp. 379–404.
Water for People, Water for Life. [(accessed on 15 May 2021)]; Available online: https://www.un.org/esa/sustdev/publications/WWDR_english_129556e.pdf.
The United Nations World Water Development Report 2015: Water for a Sustainable World. [(accessed on 15 May 2021)]; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000231823.
Gil-Ortiz R., Naranjo M.Á., Ruiz-Navarro A., Atares S., García C., Zotarelli L., San Bautista A., Vicente O. Enhanced Agronomic Efficiency Using a New Controlled-Released, Polymeric-Coated Nitrogen Fertilizer in Rice. Plants. 2020;9:1183. doi: 10.3390/plants9091183. PubMed DOI PMC
Liu C., Chen F., Li Z., Cocq K.L., Liu Y., Wu L. Impact of nitrogen practices on yield, grain quality, and nitrogen-use efficiency of crops and soil fertility in three paddy-upland cropping systems. J. Sci. Food Agric. 2021;101:2218–2226. doi: 10.1002/jsfa.10841. PubMed DOI
Zhu S., Liu L., Yang Y., Shi R. Application of controlled release urea improved grain yield and nitrogen use efficiency: A meta-analysis. PLoS ONE. 2020;15:1–15. doi: 10.1371/journal.pone.0241481. PubMed DOI PMC
Trenkel M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Efficiency in Agriculture. 2nd ed. IFA; Paris, France: 2010. p. 160.
Shaviv A. Controlled release fertilizers; Proceedings of the IFA International Workshop: Enhanced-Efficiency Fertilizers; Frankfurt, Germany. 28–30 June 2005.
Mikula K., Izydorczyk G., Skrzypczak D., Mironiuk M., Moustakas K., Witek-Krowiak A., Chojnacka K. Controll release micronutrient fertilizers for precision agriculture—A review. STOTEN. 2020;712:1–9. PubMed
Lligadas G., Ronda J.C., Galia M., Cádiz V. Development of novel phosphorus-containing epoxy resins from renewable resources. J. Polym. Sci. Part A Polym. Chem. 2006;44:6717–6727. doi: 10.1002/pola.21794. DOI
Shavit U., Shaviv A., Shalit G., Zaslavsky D. Release characteristics of a new controlled release fertilizer. J. Control Release. 1997;43:131–138. doi: 10.1016/S0168-3659(96)01478-2. DOI
Briassoulis D., Dejean C. Critical review of norms and standards for biodegradable agricultural plastics part Ι. Biodegradation in soil. J. Polym. Environ. 2010;18:384–400. doi: 10.1007/s10924-010-0168-1. DOI
Tian H., Li Z., Lu P., Wang Y., Jia C., Liu H.W.Z., Zhang M. Starch and castor oil mutually modified, cross-linked polyurethane for improving the controlled release of urea. Carbohydr. Polym. 2021;251:117060. doi: 10.1016/j.carbpol.2020.117060. PubMed DOI
Zhang C., Li Y., Chen R., Kessler M.R. Polyurethanes from solvent-free vegetable oil-based polyols. ACS Sustain. Chem. Eng. 2014;2:2465–2476. doi: 10.1021/sc500509h. DOI
Feng G., Ma Y., Zhang M., Jia P., Hu L., Liu C., Zhou Y. Polyurethane-coated urea using fully vegetable oil-based polyols: Design, nutrient release and degradation. Prog. Org. Coat. 2019;133:267–275. doi: 10.1016/j.porgcoat.2019.04.053. DOI
Bortoletto-Santos R., Ribeiro C., Polito W.L. Controlled release of nitrogen-source fertilizers by natural-oil-based poly (urethane) coatings: The kinetic aspects of urea release. J. Appl. Polym. Sci. 2016;133:43790. doi: 10.1002/app.43790. DOI
Abbasi A., Nasef M.M., Yahya W.Z.N. Copolymerization of vegetable oils and bio-based monomers with elemental sulfur: A new promising route for bio-based polymers. Sustain. Chem. Pharm. 2019;13:100158. doi: 10.1016/j.scp.2019.100158. DOI
Zhang K., Wang Z., Yu Q., Liu B., Duan M., Wang L. Effect of controlled-release urea fertilizers for oilseed rape (Brassica napus L.) on soil carbon storage and CO2 emission. Environ. Sci. Pollut. Res. 2020;27:31983–31994. doi: 10.1007/s11356-020-09440-6. PubMed DOI
Liao J., Liu X., Song H., Chen X., Zhang Z. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.) Sci. Rep. 2020;10:11063. doi: 10.1038/s41598-020-67528-y. PubMed DOI PMC
Fan L., Huang X., Hui R., Zhu F. Application of Special Controlled Release Fertilizers in Direct-seeding of Rapeseeds. J. Agric. Sci. Technol. 2015;16:745–749.
Wang S., Li X., Lu J., Li H., Liu B., Wu Q., Wang H., Xiao G., Xue X., Xu Z. Effects of combined application of urea and controlled-release urea on yield, profits of rapeseed and soil inorganic nitrogen. Chin. J. Oil Crop. Sci. 2013;35:295–300.
Tian C., Zhou X., Liu O., Peng J., Wang W., Zhang Z., Yang Y., Song H., Guan C. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.) J. Zhejiang Univ. Sci. B. 2016;17:775–786. doi: 10.1631/jzus.B1500216. PubMed DOI PMC
Wei H., Chen Z., Xing Z., Zhou L., Liu Q., Zhang Z., Jiang Y., Hu Y., Zhu J., Cui P., et al. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice. J. Integr. Agric. 2018;17:2222–2234. doi: 10.1016/S2095-3119(18)62052-0. DOI
Ma Q., Wang M., Zheng G., Yao Y., Tao R., Zhu M., Ding J., Li C., Guo W., Zhu X. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Res. 2021;267:108163. doi: 10.1016/j.fcr.2021.108163. DOI
Ye Y., Liang X., Chen Y., Liu J., Gu J., Guo R., Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013;144:212–224. doi: 10.1016/j.fcr.2012.12.003. DOI
Tang S., Yang S., Chen J., Xu P., Zhang F., Al S., Huang X. Studies on the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza sativa L.) Agric. Sci. China. 2007;6:586–596. doi: 10.1016/S1671-2927(07)60087-X. DOI
Lu Y., Sun Y., Liao Y., Nie J., Yie J., Yang Z., Zhoiu X. Effects of the application of controlled release nitrogen fertilizer on rapeseed yield, agronomic characters and soil fertility. Agric. Sci. Technol. 2015;16:1226.
Remya V.R., George S.J., Sabu T. Polymer formulations for controlled release of fertilizers. In: Lewu F.B., Volova T., Sabu T., Rakhimol K.R., editors. Controlled Release Fertilizers for Sustainable Agriculture. 1st ed. Academic Press; Cambridge, MA, USA: 2021. pp. 183–194.
Gu X.B., Li Y.N., Du Y.D. Optimized nitrogen fertilizer application improves yield, water and nitrogen use efficiencies of winter rapeseed cultivated under continuous ridges with film mulching. Ind. Crops Prod. 2017;109:233–240. doi: 10.1016/j.indcrop.2017.08.036. DOI
Sepaskhah A.R., Tafteh A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agric. Water Manag. 2012;112:55–62. doi: 10.1016/j.agwat.2012.06.005. DOI
Zhu Z.L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil Environ. Sci. 2000;9:1–6.
Xiao Y., Peng F., Zhang Y., Wang J., Zhuge Y., Zhang S., Gao H. Effect of bag-controlled release fertilizer on nitrogen loss, greenhouse gas emissions, and nitrogen applied amount in peach production. J. Clean. Prod. 2019;234:258–274. doi: 10.1016/j.jclepro.2019.06.219. DOI
Zheng W., Zhang M., Liu Z., Zhou H., Lu H., Zhang W., Yang Y., Li C., Chen B. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system. Field Crops Res. 2016;197:52–62. doi: 10.1016/j.fcr.2016.08.004. DOI
Dari B., Rodgers C.W., Walsh O.S. Understanding factors controlling ammonia volatilization from fertilizers nitrogen applications. Univ. Ida. Ext. Bul. 2019;926:1–4.
Yerokun O.A. Ammonia volatilization from ammonium nitrate, urea and urea phosphate fertilizers applied to alkaline soils. S. Afr. J. Plant. Soil. 1997;14:67–70. doi: 10.1080/02571862.1997.10635084. DOI
Bandibas J., Vermoesen A., De Groot C.J., Cleemput O.V. The effect of different moisture regimes and soil characteristics on nitrous oxide emission and consumption by different soils. Soil Sci. 1994;158:106–114. doi: 10.1097/00010694-199408000-00004. DOI
Liegel E.A., Walsh L.M. Evaluation of sulfur coated urea (SCU) applied to irrigated corn and potatoes. Agron. J. 1976;68:457–463. doi: 10.2134/agronj1976.00021962006800030006x. DOI
Zhang S., Shen T., Yang Y., Li Y.C., Wan Y., Zhang M., Tang Y., Allen S.C. Controlled-release urea reduced nitrogen leaching and improved nitrogen use efficiency and yield of direct-seeded rice. J. Environ. Manag. 2018;220:191–197. doi: 10.1016/j.jenvman.2018.05.010. PubMed DOI
Zvomuya F., Rosen C.J., Russelle M.P., Gupta S.C. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. J. Environ. Qual. 2003;32:480–489. doi: 10.2134/jeq2003.4800. PubMed DOI
Mikkelsen R.L., Williams H.M., Behel Jr A.D. Nitrogen leaching and plant uptake from controlled-release fertilizers. Fertil. Res. 1994;37:43–50. doi: 10.1007/BF00750672. DOI
Cabrera R.I. Comparative evaluation of nitrogen release patterns from controlled-release fertilizers by nitrogen leaching analysis. HortScience. 1997;32:669–673. doi: 10.21273/HORTSCI.32.4.669. DOI
Zheng W., Wan Y., Li Y., Liu Z., Chen J., Zhou H., Gao Y., Chen B., Zhang M. Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeter: Effects of blended application of controlled-release an un-coated urea. Environ. Pollut. 2020;263:114383. doi: 10.1016/j.envpol.2020.114383. PubMed DOI PMC
FAO . World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends from Soil Maps. FAO; Rome, Italy: 2015. World Soil Resources Reports No. 106.
Gee G.W., Bauder J.W. Particle-size analysis. In: Klute A., editor. Methods of Soil Analysis Part 1—Physical and Mineralogical Methods. ASA and SSSA; Madison, WI, USA: 1986. pp. 383–411.
Zbíral J., Malý S., Váňa M., editors. Soil Analysis III. 3rd ed. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2011. pp. 18–52. (In Czech)
Schumacher B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments. United States Environmental Protection Agency, Environmental Sciences Division National, Exposure Research Laboratory; Las Vegas, NV, USA: 2002.
Šenkýř J., Petr J. Nitrate ion selective electrode. Chem. Listy. 1979;73:1097–1105. (In Czech)
Zbíral J., Čižmárová E., Dočkalová R., Fojtlová E., Hájková H., Holcová H., Kabátová N., Niedobová E., Rychlý M., Staňková K., et al. Analysis of Plant Material. 3rd ed. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2014. pp. 18–38. (In Czech)
Determination of Fat Content in Oilseeds. [(accessed on 25 May 2021)]; Available online: http://eagri.cz/public/web/file/246173/_10060._1_Stanoveni_obsahu_tuku_v_olej_semenech.pdf. (In Czech)
StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12. [(accessed on 13 May 2021)];2013 Available online: www.statsoft.com.