Enzymes metabolizing aristolochic acid and their contribution to the development of aristolochic acid nephropathy and urothelial cancer

. 2013 Jul ; 14 (6) : 695-705.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23701164

Grantová podpora
14329 Cancer Research UK - United Kingdom

Odkazy

PubMed 23701164
DOI 10.2174/1389200211314060006
PII: CDM-EPUB-20130509-5
Knihovny.cz E-zdroje

Aristolochic acid (AA), a plant nephrotoxin and carcinogen, causes aristolochic acid nephropathy (AAN) and its associated urothelial malignancy, and is hypothesized to be responsible for Balkan endemic nephropathy (BEN). The major component of AA, aristolochic acid I (AAI), is the predominant compound responsible for these diseases. The reductive activation of AAI leads to the formation of covalent DNA adducts. The most abundant DNA adduct, 7-(deoxyadenosin-N6-yl)aristolactam I, causes characteristic AT→TA transversions found in the TP53 tumor suppressor gene in tumors from AAN and BEN patients. Understanding which human enzymes are involved in AAI activation to species forming DNA adducts and/or detoxication to the AAI O-demethylated metabolite, aristolochic acid Ia (AAIa), is important in the assessment of the susceptibility to this carcinogen. This review summarizes the latest data on identifying human and rodent enzymes participating in AAI metabolism. NAD(P)H:quinone oxidoreductase (NQO1) is the most efficient cytosolic nitroreductase activating AAI in vitro and in vivo. In human hepatic microsomes, AAI is activated by cytochrome P450 1A2 (CYP1A2) and, to a lesser extent, by CYP1A1; NADPH:CYP oxidoreductase also plays a minor role. Human and rodent CYP1A1 and 1A2 are also the principal enzymes involved in oxidative detoxication of AAI to AAIa in vitro and in vivo. The orientation of AAI in the active sites of human CYP1A1/2 and NQO1 was predicted from molecular modeling and is consistent with the efficient reduction of AAI by them observed experimentally. Molecular modeling also shows why CYP1A2 plays an important role in the oxidation of AAI to AAIa.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aristolochic acid-associated cancers: a public health risk in need of global action

. 2022 Oct ; 22 (10) : 576-591. [epub] 20220719

Co-Exposure to Aristolochic Acids I and II Increases DNA Adduct Formation Responsible for Aristolochic Acid I-Mediated Carcinogenicity in Rats

. 2021 Sep 28 ; 22 (19) : . [epub] 20210928

The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro

. 2019 Nov ; 93 (11) : 3345-3366. [epub] 20191010

DNA Adducts Formed by Aristolochic Acid Are Unique Biomarkers of Exposure and Explain the Initiation Phase of Upper Urothelial Cancer

. 2017 Oct 14 ; 18 (10) : . [epub] 20171014

Comparison of the oxidation of carcinogenic aristolochic acid I and II by microsomal cytochromes P450 in vitro: experimental and theoretical approaches

. 2017 ; 148 (11) : 1971-1981. [epub] 20170726

Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone

. 2017 Apr ; 91 (4) : 1957-1975. [epub] 20160824

Lipid molecules can induce an opening of membrane-facing tunnels in cytochrome P450 1A2

. 2016 Nov 09 ; 18 (44) : 30344-30356.

Balkan endemic nephropathy: an update on its aetiology

. 2016 Nov ; 90 (11) : 2595-2615. [epub] 20160819

Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo

. 2016 Feb 17 ; 344-346 () : 7-18. [epub] 20160201

Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1

. 2016 Feb 05 ; 17 (2) : 213. [epub] 20160205

A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches

. 2015 Nov 18 ; 16 (11) : 27561-75. [epub] 20151118

Mechanisms of enzyme-catalyzed reduction of two carcinogenic nitro-aromatics, 3-nitrobenzanthrone and aristolochic acid I: Experimental and theoretical approaches

. 2014 Jun 10 ; 15 (6) : 10271-95. [epub] 20140610

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...