Co-Exposure to Aristolochic Acids I and II Increases DNA Adduct Formation Responsible for Aristolochic Acid I-Mediated Carcinogenicity in Rats

. 2021 Sep 28 ; 22 (19) : . [epub] 20210928

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34638820

Grantová podpora
18-10251S Grantová Agentura České Republiky

The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804-2818, 2020), we showed that the in vivo metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e., AAI/AAII mixture). Using the same rat model, we investigated how exposure to the AAI/AAII mixture can influence AAI and AAII DNA adduct formation (i.e., AA-mediated genotoxicity). Using 32P-postlabelling, we found that AA-DNA adduct formation was increased in the livers and kidneys of rats treated with AAI/AAII mixture compared to rats treated with AAI or AAII alone. Measuring the activity of enzymes involved in AA metabolism, we showed that enhanced AA-DNA adduct formation might be caused partially by both decreased AAI detoxification as a result of hepatic CYP2C11 inhibition during treatment with AAI/AAII mixture and by hepatic or renal NQO1 induction, the key enzyme predominantly activating AA to DNA adducts. Moreover, our results indicate that AAII might act as an inhibitor of AAI detoxification in vivo. Consequently, higher amounts of AAI might remain in liver and kidney tissues, which can be reductively activated, resulting in enhanced AAI DNA adduct formation. Collectively, these results indicate that AAII present in the plant extract AA enhances the genotoxic properties of AAI (i.e., AAI DNA adduct formation). As patients suffering from AAN and BEN are always exposed to the plant extract (i.e., AAI/AAII mixture), our findings are crucial to better understanding host factors critical for AAN- and BEN-associated urothelial malignancy.

Zobrazit více v PubMed

Heinrich M., Chan J., Wanke S., Neinhuis C., Simmonds M.S.J. Local Uses of Aristolochia Species and Content of Nephrotoxic Aristolochic Acid 1 and 2-A Global Assessment Based on Bibliographic Sources. J. Ethnopharmacol. 2009;125:108–144. doi: 10.1016/j.jep.2009.05.028. PubMed DOI

Arlt V.M., Stiborova M., Schmeiser H.H. Aristolochic Acid as a Probable Human Cancer Hazard in Herbal Remedies: A Review. Mutagenesis. 2002;17:265–277. doi: 10.1093/mutage/17.4.265. PubMed DOI

Nik-Zainal S., Kucab J.E., Morganella S., Glodzik D., Alexandrov L.B., Arlt V.M., Weninger A., Hollstein M., Stratton M.R., Phillips D.H. The Genome as a Record of Environmental Exposure. Mutagenesis. 2015;30:763–770. doi: 10.1093/mutage/gev073. PubMed DOI PMC

Kucab J.E., Zou X., Morganella S., Joel M., Nanda A.S., Nagy E., Gomez C., Degasperi A., Harris R., Jackson S.P., et al. A Compendium of Mutational Signatures of Environmental Agents. Cell. 2019;177:821–836.e16. doi: 10.1016/j.cell.2019.03.001. PubMed DOI PMC

Matsumura S., Sato H., Otsubo Y., Tasaki J., Ikeda N., Morita O. Genome-Wide Somatic Mutation Analysis via Hawk-SeqTM Reveals Mutation Profiles Associated with Chemical Mutagens. Arch. Toxicol. 2019;93:2689–2701. doi: 10.1007/s00204-019-02541-3. PubMed DOI

Elhajouji A., Hove T.T., O’Connell O., Martus H., Dertinger S.D. Pig-a Gene Mutation Assay Study Design: Critical Assessment of 3- versus 28-Day Repeat-Dose Treatment Schedules. Mutagenesis. 2020;35:349–358. doi: 10.1093/mutage/geaa014. PubMed DOI PMC

Volkova N.V., Meier B., González-Huici V., Bertolini S., Gonzalez S., Vöhringer H., Abascal F., Martincorena I., Campbell P.J., Gartner A., et al. Mutational Signatures Are Jointly Shaped by DNA Damage and Repair. Nat. Commun. 2020;11:2169. doi: 10.1038/s41467-020-15912-7. PubMed DOI PMC

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Pharmaceuticals A Review of Human Carcinogens. IARC Monogr. Eval. Carcinog. Risks Hum. 2012;100:1–401. PubMed PMC

Gökmen M.R., Cosyns J.-P., Arlt V.M., Stiborová M., Phillips D.H., Schmeiser H.H., Simmonds M.S.J., Cook H.T., Vanherweghem J.-L., Nortier J.L., et al. The Epidemiology, Diagnosis, and Management of Aristolochic Acid Nephropathy: A Narrative Review. Ann. Intern. Med. 2013;158:469–477. doi: 10.7326/0003-4819-158-6-201303190-00006. PubMed DOI

Grollman A.P. Aristolochic Acid Nephropathy: Harbinger of a Global Iatrogenic Disease. Environ. Mol. Mutagen. 2013;54:1–7. doi: 10.1002/em.21756. PubMed DOI

Debelle F.D., Vanherweghem J.-L., Nortier J.L. Aristolochic Acid Nephropathy: A Worldwide Problem. Kidney Int. 2008;74:158–169. doi: 10.1038/ki.2008.129. PubMed DOI

Arlt V.M., Stiborová M., vom Brocke J., Simões M.L., Lord G.M., Nortier J.L., Hollstein M., Phillips D.H., Schmeiser H.H. Aristolochic Acid Mutagenesis: Molecular Clues to the Aetiology of Balkan Endemic Nephropathy-Associated Urothelial Cancer. Carcinogenesis. 2007;28:2253–2261. doi: 10.1093/carcin/bgm082. PubMed DOI

Grollman A.P., Shibutani S., Moriya M., Miller F., Wu L., Moll U., Suzuki N., Fernandes A., Rosenquist T., Medverec Z., et al. Aristolochic Acid and the Etiology of Endemic (Balkan) Nephropathy. Proc. Natl. Acad. Sci. USA. 2007;104:12129–12134. doi: 10.1073/pnas.0701248104. PubMed DOI PMC

Stiborová M., Frei E., Arlt V.M., Schmeiser H.H. Metabolic Activation of Carcinogenic Aristolochic Acid, a Risk Factor for Balkan Endemic Nephropathy. Mutat. Res. 2008;658:55–67. doi: 10.1016/j.mrrev.2007.07.003. PubMed DOI

Stiborová M., Arlt V.M., Schmeiser H.H. Balkan Endemic Nephropathy: An Update on Its Aetiology. Arch. Toxicol. 2016;90:2595–2615. doi: 10.1007/s00204-016-1819-3. PubMed DOI PMC

Schmeiser H.H., Kucab J.E., Arlt V.M., Phillips D.H., Hollstein M., Gluhovschi G., Gluhovschi C., Modilca M., Daminescu L., Petrica L., et al. Evidence of Exposure to Aristolochic Acid in Patients with Urothelial Cancer from a Balkan Endemic Nephropathy Region of Romania. Environ. Mol. Mutagen. 2012;53:636–641. doi: 10.1002/em.21732. PubMed DOI

Jelaković B., Dika Ž., Arlt V.M., Stiborova M., Pavlović N.M., Nikolić J., Colet J.-M., Vanherweghem J.-L., Nortier J.L. Balkan Endemic Nephropathy and the Causative Role of Aristolochic Acid. Semin. Nephrol. 2019;39:284–296. doi: 10.1016/j.semnephrol.2019.02.007. PubMed DOI

Shibutani S., Dong H., Suzuki N., Ueda S., Miller F., Grollman A.P. Selective Toxicity of Aristolochic Acids I and II. Drug Metab. Dispos. Biol. Fate Chem. 2007;35:1217–1222. doi: 10.1124/dmd.107.014688. PubMed DOI

Stiborová M., Frei E., Schmeiser H.H. Biotransformation Enzymes in Development of Renal Injury and Urothelial Cancer Caused by Aristolochic Acid. Kidney Int. 2008;73:1209–1211. doi: 10.1038/ki.2008.125. PubMed DOI

Stiborová M., Martínek V., Frei E., Arlt V.M., Schmeiser H.H. Enzymes Metabolizing Aristolochic Acid and Their Contribution to the Development of Aristolochic Acid Nephropathy and Urothelial Cancer. Curr. Drug Metab. 2013;14:695–705. doi: 10.2174/1389200211314060006. PubMed DOI

Stiborová M., Frei E., Schmeiser H.H., Arlt V.M., Martínek V. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches. Int. J. Mol. Sci. 2014;15:10271–10295. doi: 10.3390/ijms150610271. PubMed DOI PMC

Stiborová M., Frei E., Arlt V.M., Schmeiser H.H. Knockout and Humanized Mice as Suitable Tools to Identify Enzymes Metabolizing the Human Carcinogen Aristolochic Acid. Xenobiotica Fate Foreign Compd. Biol. Syst. 2014;44:135–145. doi: 10.3109/00498254.2013.848310. PubMed DOI

Pfau W., Schmeiser H.H., Wiessler M. Aristolochic Acid Binds Covalently to the Exocyclic Amino Group of Purine Nucleotides in DNA. Carcinogenesis. 1990;11:313–319. doi: 10.1093/carcin/11.2.313. PubMed DOI

Pfau W., Schmeiser H.H., Wiessler M. N6-Adenyl Arylation of DNA by Aristolochic Acid II and a Synthetic Model for the Putative Proximate Carcinogen. Chem. Res. Toxicol. 1991;4:581–586. doi: 10.1021/tx00023a015. PubMed DOI

Stiborová M., Fernando R.C., Schmeiser H.H., Frei E., Pfau W., Wiessler M. Characterization of DNA Adducts Formed by Aristolochic Acids in the Target Organ (Forestomach) of Rats by 32P-Postlabelling Analysis Using Different Chromatographic Procedures. Carcinogenesis. 1994;15:1187–1192. doi: 10.1093/carcin/15.6.1187. PubMed DOI

Stiborová M., Frei E., Breuer A., Wiessler M., Schmeiser H.H. Evidence for Reductive Activation of Carcinogenic Aristolochic Acids by Prostaglandin H Synthase—32P-Postlabeling Analysis of DNA Adduct Formation. Mutat. Res. 2001;493:149–160. doi: 10.1016/S1383-5718(01)00171-1. PubMed DOI

Stiborová M., Frei E., Wiessler M., Schmeiser H.H. Human Enzymes Involved in the Metabolic Activation of Carcinogenic Aristolochic Acids: Evidence for Reductive Activation by Cytochromes P450 1A1 and 1A2. Chem. Res. Toxicol. 2001;14:1128–1137. doi: 10.1021/tx010059z. PubMed DOI

Stiborová M., Hájek M., Frei E., Schmeiser H.H. Carcinogenic and Nephrotoxic Alkaloids Aristolochic Acids upon Activation by NADPH: Cytochrome P450 Reductase Form Adducts Found in DNA of Patients with Chinese Herbs Nephropathy. Gen. Physiol. Biophys. 2001;20:375–392. PubMed

Schmeiser H.H., Frei E., Wiessler M., Stiborova M. Comparison of DNA Adduct Formation by Aristolochic Acids in Various in Vitro Activation Systems by 32P-Post-Labelling: Evidence for Reductive Activation by Peroxidases. Carcinogenesis. 1997;18:1055–1062. doi: 10.1093/carcin/18.5.1055. PubMed DOI

Martinek V., Kubickova B., Arlt V.M., Frei E., Schmeiser H.H., Hudecek J., Stiborova M. Comparison of Activation of Aristolochic Acid I and II with NADPH:Quinone Oxidoreductase, Sulphotransferases and N-Acetyltranferases. Neuro Endocrinol. Lett. 2011;32((Suppl. S1)):57–70. PubMed

Schmeiser H.H., Bieler C.A., Wiessler M., van Ypersele de Strihou C., Cosyns J.P. Detection of DNA Adducts Formed by Aristolochic Acid in Renal Tissue from Patients with Chinese Herbs Nephropathy. Cancer Res. 1996;56:2025–2028. PubMed

Schmeiser H.H., Nortier J.L., Singh R., Gamboa da Costa G., Sennesael J., Cassuto-Viguier E., Ambrosetti D., Rorive S., Pozdzik A., Phillips D.H., et al. Exceptionally Long-Term Persistence of DNA Adducts Formed by Carcinogenic Aristolochic Acid I in Renal Tissue from Patients with Aristolochic Acid Nephropathy. Int. J. Cancer. 2014;135:502–507. doi: 10.1002/ijc.28681. PubMed DOI

Bieler C.A., Stiborova M., Wiessler M., Cosyns J.P., van Ypersele de Strihou C., Schmeiser H.H. 32P-Post-Labelling Analysis of DNA Adducts Formed by Aristolochic Acid in Tissues from Patients with Chinese Herbs Nephropathy. Carcinogenesis. 1997;18:1063–1067. doi: 10.1093/carcin/18.5.1063. PubMed DOI

Nortier J.L., Martinez M.C., Schmeiser H.H., Arlt V.M., Bieler C.A., Petein M., Depierreux M.F., De Pauw L., Abramowicz D., Vereerstraeten P., et al. Urothelial Carcinoma Associated with the Use of a Chinese Herb (Aristolochia Fangchi) N. Engl. J. Med. 2000;342:1686–1692. doi: 10.1056/NEJM200006083422301. PubMed DOI

Arlt V.M., Pfohl-Leszkowicz A., Cosyns J., Schmeiser H.H. Analyses of DNA Adducts Formed by Ochratoxin A and Aristolochic Acid in Patients with Chinese Herbs Nephropathy. Mutat. Res. 2001;494:143–150. doi: 10.1016/S1383-5718(01)00188-7. PubMed DOI

Arlt V.M., Ferluga D., Stiborova M., Pfohl-Leszkowicz A., Vukelic M., Ceovic S., Schmeiser H.H., Cosyns J.-P. Is Aristolochic Acid a Risk Factor for Balkan Endemic Nephropathy-Associated Urothelial Cancer? Int. J. Cancer. 2002;101:500–502. doi: 10.1002/ijc.10602. PubMed DOI

Jelaković B., Karanović S., Vuković-Lela I., Miller F., Edwards K.L., Nikolić J., Tomić K., Slade N., Brdar B., Turesky R.J., et al. Aristolactam-DNA Adducts Are a Biomarker of Environmental Exposure to Aristolochic Acid. Kidney Int. 2012;81:559–567. doi: 10.1038/ki.2011.371. PubMed DOI PMC

Lord G.M., Hollstein M., Arlt V.M., Roufosse C., Pusey C.D., Cook T., Schmeiser H.H. DNA Adducts and P53 Mutations in a Patient with Aristolochic Acid-Associated Nephropathy. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2004;43:e11–e17. doi: 10.1053/j.ajkd.2003.11.024. PubMed DOI

Chen C.-H., Dickman K.G., Moriya M., Zavadil J., Sidorenko V.S., Edwards K.L., Gnatenko D.V., Wu L., Turesky R.J., Wu X.-R., et al. Aristolochic Acid-Associated Urothelial Cancer in Taiwan. Proc. Natl. Acad. Sci. USA. 2012;109:8241–8246. doi: 10.1073/pnas.1119920109. PubMed DOI PMC

Hoang M.L., Chen C.-H., Sidorenko V.S., He J., Dickman K.G., Yun B.H., Moriya M., Niknafs N., Douville C., Karchin R., et al. Mutational Signature of Aristolochic Acid Exposure as Revealed by Whole-Exome Sequencing. Sci. Transl. Med. 2013;5:197ra102. doi: 10.1126/scitranslmed.3006200. PubMed DOI PMC

Poon S.L., Pang S.-T., McPherson J.R., Yu W., Huang K.K., Guan P., Weng W.-H., Siew E.Y., Liu Y., Heng H.L., et al. Genome-Wide Mutational Signatures of Aristolochic Acid and Its Application as a Screening Tool. Sci. Transl. Med. 2013;5:197ra101. doi: 10.1126/scitranslmed.3006086. PubMed DOI

Poon S.L., Huang M.N., Choo Y., McPherson J.R., Yu W., Heng H.L., Gan A., Myint S.S., Siew E.Y., Ler L.D., et al. Mutation Signatures Implicate Aristolochic Acid in Bladder Cancer Development. Genome Med. 2015;7:38. doi: 10.1186/s13073-015-0161-3. PubMed DOI PMC

Schmeiser H.H., Schoepe K.B., Wiessler M. DNA Adduct Formation of Aristolochic Acid I and II in Vitro and in Vivo. Carcinogenesis. 1988;9:297–303. doi: 10.1093/carcin/9.2.297. PubMed DOI

Arlt V.M., Meinl W., Florian S., Nagy E., Barta F., Thomann M., Mrizova I., Krais A.M., Liu M., Richards M., et al. Impact of Genetic Modulation of SULT1A Enzymes on DNA Adduct Formation by Aristolochic Acids and 3-Nitrobenzanthrone. Arch. Toxicol. 2017;91:1957–1975. doi: 10.1007/s00204-016-1808-6. PubMed DOI PMC

Stiborová M., Frei E., Sopko B., Wiessler M., Schmeiser H.H. Carcinogenic Aristolochic Acids upon Activation by DT-Diaphorase Form Adducts Found in DNA of Patients with Chinese Herbs Nephropathy. Carcinogenesis. 2002;23:617–625. doi: 10.1093/carcin/23.4.617. PubMed DOI

Kumar V., Poonam, Prasad A.K., Parmar V.S. Naturally Occurring Aristolactams, Aristolochic Acids and Dioxoaporphines and Their Biological Activities. Nat. Prod. Rep. 2003;20:565–583. doi: 10.1039/b303648k. PubMed DOI

Michl J., Kite G.C., Wanke S., Zierau O., Vollmer G., Neinhuis C., Simmonds M.S.J., Heinrich M. LC-MS- and (1)H NMR-Based Metabolomic Analysis and in Vitro Toxicological Assessment of 43 Aristolochia Species. J. Nat. Prod. 2016;79:30–37. doi: 10.1021/acs.jnatprod.5b00556. PubMed DOI

Dedíková A., Bárta F., Martínek V., Kotalík K., Dušková Š., Mráz J., Arlt V.M., Stiborová M., Hodek P. In Vivo Metabolism of Aristolochic Acid I and II in Rats Is Influenced by Their Coexposure. Chem. Res. Toxicol. 2020;33:2804–2818. doi: 10.1021/acs.chemrestox.0c00198. PubMed DOI

Martínek V., Bárta F., Hodek P., Frei E., Schmeiser H.H., Arlt V.M., Stiborová M. Comparison of the Oxidation of Carcinogenic Aristolochic Acid I and II by Microsomal Cytochromes P450 in Vitro: Experimental and Theoretical Approaches. Monatshefte Chem. 2017;148:1971–1981. doi: 10.1007/s00706-017-2014-9. PubMed DOI PMC

Rendic S., Di Carlo F.J. Human Cytochrome P450 Enzymes: A Status Report Summarizing Their Reactions, Substrates, Inducers, and Inhibitors. Drug Metab. Rev. 1997;29:413–580. doi: 10.3109/03602539709037591. PubMed DOI

Stiborová M., Frei E., Hodek P., Wiessler M., Schmeiser H.H. Human Hepatic and Renal Microsomes, Cytochromes P450 1A1/2, NADPH:Cytochrome P450 Reductase and Prostaglandin H Synthase Mediate the Formation of Aristolochic Acid-DNA Adducts Found in Patients with Urothelial Cancer. Int. J. Cancer. 2005;113:189–197. doi: 10.1002/ijc.20564. PubMed DOI

Stiborová M., Bárta F., Levová K., Hodek P., Schmeiser H.H., Arlt V.M., Martínek V. A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches. Int. J. Mol. Sci. 2015;16:27561–27575. doi: 10.3390/ijms161126047. PubMed DOI PMC

Ban T.H., Min J.-W., Seo C., Kim D.R., Lee Y.H., Chung B.H., Jeong K.-H., Lee J.W., Kim B.S., Lee S.-H., et al. Update of Aristolochic Acid Nephropathy in Korea. Korean J. Intern. Med. 2018;33:961–969. doi: 10.3904/kjim.2016.288. PubMed DOI PMC

Chen C.-J., Yang Y.-H., Lin M.-H., Lee C.-P., Tsan Y.-T., Lai M.-N., Yang H.-Y., Ho W.-C., Chen P.-C., Health Data Analysis in Taiwan (hDATa) Research Group Herbal Medicine Containing Aristolochic Acid and the Risk of Hepatocellular Carcinoma in Patients with Hepatitis B Virus Infection. Int. J. Cancer. 2018;143:1578–1587. doi: 10.1002/ijc.31544. PubMed DOI

Hoang M.L., Chen C.-H., Chen P.-C., Roberts N.J., Dickman K.G., Yun B.H., Turesky R.J., Pu Y.-S., Vogelstein B., Papadopoulos N., et al. Aristolochic Acid in the Etiology of Renal Cell Carcinoma. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2016;25:1600–1608. doi: 10.1158/1055-9965.EPI-16-0219. PubMed DOI PMC

Wang Q., Zhang T., Wu J., Wen J., Tao D., Wan T., Zhu W. Prognosis and Risk Factors of Patients with Upper Urinary Tract Urothelial Carcinoma and Postoperative Recurrence of Bladder Cancer in Central China. BMC Urol. 2019;19:24. doi: 10.1186/s12894-019-0457-5. PubMed DOI PMC

Zhong W., Zhang L., Ma J., Shao S., Lin R., Li X., Xiong G., Fang D., Zhou L. Impact of Aristolochic Acid Exposure on Oncologic Outcomes of Upper Tract Urothelial Carcinoma after Radical Nephroureterectomy. OncoTargets Ther. 2017;10:5775–5782. doi: 10.2147/OTT.S148641. PubMed DOI PMC

Luo H.L., Ohyama C., Hatakeyama S., Wang H.J., Yoneyama T., Yang W.C., Chuang Y.C., Chen Y.T., Lee W.C., Cheng Y.T., et al. Unusual Presentation of Upper Urinary Tract Urothelial Carcinoma in Taiwan: Direct Comparison from Taiwan-Japan UTUC Collaboration Cohort. Int. J. Urol. Off. J. Jpn. Urol. Assoc. 2020;27:327–332. doi: 10.1111/iju.14188. PubMed DOI

Chen C.-H., Dickman K.G., Huang C.-Y., Shun C.-T., Tai H.-C., Huang K.-H., Wang S.-M., Lee Y.-J., Grollman A.P., Pu Y.-S. Recurrence Pattern and TP53 Mutation in Upper Urinary Tract Urothelial Carcinoma. Oncotarget. 2016;7:45225–45236. doi: 10.18632/oncotarget.9904. PubMed DOI PMC

Dračínská H., Bárta F., Levová K., Hudecová A., Moserová M., Schmeiser H.H., Kopka K., Frei E., Arlt V.M., Stiborová M. Induction of Cytochromes P450 1A1 and 1A2 Suppresses Formation of DNA Adducts by Carcinogenic Aristolochic Acid I in Rats in Vivo. Toxicology. 2016;344–346:7–18. doi: 10.1016/j.tox.2016.01.011. PubMed DOI PMC

Stiborová M., Levová K., Bárta F., Šulc M., Frei E., Arlt V.M., Schmeiser H.H. The Influence of Dicoumarol on the Bioactivation of the Carcinogen Aristolochic Acid I in Rats. Mutagenesis. 2014;29:189–200. doi: 10.1093/mutage/geu004. PubMed DOI

Stiborová M., Bárta F., Levová K., Hodek P., Frei E., Arlt V.M., Schmeiser H.H. The Influence of Ochratoxin A on DNA Adduct Formation by the Carcinogen Aristolochic Acid in Rats. Arch. Toxicol. 2015;89:2141–2158. doi: 10.1007/s00204-014-1360-1. PubMed DOI

Xing G., Qi X., Chen M., Wu Y., Yao J., Gong L., Nohmi T., Luan Y., Ren J. Comparison of the Mutagenicity of Aristolochic Acid I and Aristolochic Acid II in the Gpt Delta Transgenic Mouse Kidney. Mutat. Res. 2012;743:52–58. doi: 10.1016/j.mrgentox.2011.12.021. PubMed DOI

Bárta F., Levová K., Frei E., Schmeiser H.H., Arlt V.M., Stiborová M. The Effect of Aristolochic Acid I on Expression of NAD(P)H:Quinone Oxidoreductase in Mice and Rats--a Comparative Study. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014;768:1–7. doi: 10.1016/j.mrgentox.2014.01.012. PubMed DOI

Chen M., Gong L., Qi X., Xing G., Luan Y., Wu Y., Xiao Y., Yao J., Li Y., Xue X., et al. Inhibition of Renal NQO1 Activity by Dicoumarol Suppresses Nitroreduction of Aristolochic Acid I and Attenuates Its Nephrotoxicity. Toxicol. Sci. Off. J. Soc. Toxicol. 2011;122:288–296. doi: 10.1093/toxsci/kfr138. PubMed DOI

Sborchia M., De Prez E.G., Antoine M.-H., Bienfait L., Indra R., Valbuena G., Phillips D.H., Nortier J.L., Stiborová M., Keun H.C., et al. The Impact of P53 on Aristolochic Acid I-Induced Nephrotoxicity and DNA Damage in Vivo and in Vitro. Arch. Toxicol. 2019;93:3345–3366. doi: 10.1007/s00204-019-02578-4. PubMed DOI PMC

Dinkova-Kostova A.T., Talalay P. NAD(P)H:Quinone Acceptor Oxidoreductase 1 (NQO1), a Multifunctional Antioxidant Enzyme and Exceptionally Versatile Cytoprotector. Arch. Biochem. Biophys. 2010;501:116–123. doi: 10.1016/j.abb.2010.03.019. PubMed DOI PMC

Jaiswal A.K. Regulation of Genes Encoding NAD(P)H:Quinone Oxidoreductases. Free Radic. Biol. Med. 2000;29:254–262. doi: 10.1016/S0891-5849(00)00306-3. PubMed DOI

Ma Q., Kinneer K., Bi Y., Chan J.Y., Kan Y.W. Induction of Murine NAD(P)H:Quinone Oxidoreductase by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Requires the CNC (Cap “n” Collar) Basic Leucine Zipper Transcription Factor Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2): Cross-Interaction between AhR (Aryl Hydrocarbon Receptor) and Nrf2 Signal Transduction. Biochem. J. 2004;377:205–213. doi: 10.1042/BJ20031123. PubMed DOI PMC

Stiborová M., Dračínská H., Martínek V., Svášková D., Hodek P., Milichovský J., Hejduková Ž., Brotánek J., Schmeiser H.H., Frei E. Induced Expression of Cytochrome P450 1A and NAD(P)H:Quinone Oxidoreductase Determined at MRNA, Protein, and Enzyme Activity Levels in Rats Exposed to the Carcinogenic Azo Dye 1-Phenylazo-2-Naphthol (Sudan I) Chem. Res. Toxicol. 2013;26:290–299. doi: 10.1021/tx3004533. PubMed DOI

Talalay P., Prochaska H. Mechanisms of Induction of Nad(p)h—Quinone Reductase. Chem. Scr. 1987;27A:61–66.

Wang L., He X., Szklarz G.D., Bi Y., Rojanasakul Y., Ma Q. The Aryl Hydrocarbon Receptor Interacts with Nuclear Factor Erythroid 2-Related Factor 2 to Mediate Induction of NAD(P)H:Quinoneoxidoreductase 1 by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Arch. Biochem. Biophys. 2013;537:31–38. doi: 10.1016/j.abb.2013.06.001. PubMed DOI PMC

Ross D., Kepa J.K., Winski S.L., Beall H.D., Anwar A., Siegel D. NAD(P)H:Quinone Oxidoreductase 1 (NQO1): Chemoprotection, Bioactivation, Gene Regulation and Genetic Polymorphisms. Chem. Biol. Interact. 2000;129:77–97. doi: 10.1016/S0009-2797(00)00199-X. PubMed DOI

Ross D. Quinone Reductases Multitasking in the Metabolic World. Drug Metab. Rev. 2004;36:639–654. doi: 10.1081/DMR-200033465. PubMed DOI

Hajirahimkhan A., Simmler C., Dong H., Lantvit D.D., Li G., Chen S.-N., Nikolić D., Pauli G.F., van Breemen R.B., Dietz B.M., et al. Induction of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) by Glycyrrhiza Species Used for Women’s Health: Differential Effects of the Michael Acceptors Isoliquiritigenin and Licochalcone A. Chem. Res. Toxicol. 2015;28:2130–2141. doi: 10.1021/acs.chemrestox.5b00310. PubMed DOI PMC

Yu F.-Y., Wu T.-S., Chen T.-W., Liu B.-H. Aristolochic Acid I Induced Oxidative DNA Damage Associated with Glutathione Depletion and ERK1/2 Activation in Human Cells. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA. 2011;25:810–816. doi: 10.1016/j.tiv.2011.01.016. PubMed DOI

Romanov V., Whyard T.C., Waltzer W.C., Grollman A.P., Rosenquist T. Aristolochic Acid-Induced Apoptosis and G2 Cell Cycle Arrest Depends on ROS Generation and MAP Kinases Activation. Arch. Toxicol. 2015;89:47–56. doi: 10.1007/s00204-014-1249-z. PubMed DOI

Yeh Y.-H., Lee Y.-T., Hsieh H.-S., Hwang D.-F. Short-Term Toxicity of Aristolochic Acid, Aristolochic Acid-I and Aristolochic Acid-II in Rats. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2008;46:1157–1163. doi: 10.1016/j.fct.2007.11.015. PubMed DOI

Levová K., Moserová M., Kotrbová V., Sulc M., Henderson C.J., Wolf C.R., Phillips D.H., Frei E., Schmeiser H.H., Mares J., et al. Role of Cytochromes P450 1A1/2 in Detoxication and Activation of Carcinogenic Aristolochic Acid I: Studies with the Hepatic NADPH:Cytochrome P450 Reductase Null (HRN) Mouse Model. Toxicol. Sci. Off. J. Soc. Toxicol. 2011;121:43–56. doi: 10.1093/toxsci/kfr050. PubMed DOI

Sistkova J., Hudecek J., Hodek P., Frei E., Schmeiser H.H., Stiborova M. Human Cytochromes P450 1A1 and 1A2 Participate in Detoxication of Carcinogenic Aristolochic Acid. Neuro Endocrinol. Lett. 2008;29:733–737. PubMed

Stiborova M., Mares J., Levova K., Pavlickova J., Barta F., Hodek P., Frei E., Schmeiser H.H. Role of Cytochromes P450 in Metabolism of Carcinogenic Aristolochic Acid I: Evidence of Their Contribution to Aristolochic Acid I Detoxication and Activation in Rat Liver. Neuro Endocrinol. Lett. 2011;32((Suppl. S1)):121–130. PubMed

Stiborová M., Levová K., Bárta F., Shi Z., Frei E., Schmeiser H.H., Nebert D.W., Phillips D.H., Arlt V.M. Bioactivation versus Detoxication of the Urothelial Carcinogen Aristolochic Acid I by Human Cytochrome P450 1A1 and 1A2. Toxicol. Sci. Off. J. Soc. Toxicol. 2012;125:345–358. doi: 10.1093/toxsci/kfr306. PubMed DOI PMC

Rosenquist T.A., Einolf H.J., Dickman K.G., Wang L., Smith A., Grollman A.P. Cytochrome P450 1A2 Detoxicates Aristolochic Acid in the Mouse. Drug Metab. Dispos. Biol. Fate Chem. 2010;38:761–768. doi: 10.1124/dmd.110.032201. PubMed DOI PMC

Xiao Y., Ge M., Xue X., Wang C., Wang H., Wu X., Li L., Liu L., Qi X., Zhang Y., et al. Hepatic Cytochrome P450s Metabolize Aristolochic Acid and Reduce Its Kidney Toxicity. Kidney Int. 2008;73:1231–1239. doi: 10.1038/ki.2008.103. PubMed DOI

Xue X., Xiao Y., Zhu H., Wang H., Liu Y., Xie T., Ren J. Induction of P450 1A by 3-Methylcholanthrene Protects Mice from Aristolochic Acid-I-Induced Acute Renal Injury. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2008;23:3074–3081. doi: 10.1093/ndt/gfn262. PubMed DOI

Arlt V.M., Levová K., Bárta F., Shi Z., Evans J.D., Frei E., Schmeiser H.H., Nebert D.W., Phillips D.H., Stiborová M. Role of P450 1A1 and P450 1A2 in Bioactivation versus Detoxication of the Renal Carcinogen Aristolochic Acid I: Studies in Cyp1a1-/-, Cyp1a2-/-, and Cyp1a1/1a2-/- Mice. Chem. Res. Toxicol. 2011;24:1710–1719. doi: 10.1021/tx200259y. PubMed DOI

Milichovský J., Bárta F., Schmeiser H.H., Arlt V.M., Frei E., Stiborová M., Martínek V. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1. Int. J. Mol. Sci. 2016;17:213. doi: 10.3390/ijms17020213. PubMed DOI PMC

Wang L., Zhang H., Li C., Yi Y., Liu J., Zhao Y., Tian J., Zhang Y., Wei X., Gao Y., et al. Omeprazole Alleviates Aristolochia Manshuriensis Kom-Induced Acute Nephrotoxicity. PLoS ONE. 2016;11:e0164215. doi: 10.1371/journal.pone.0164215. PubMed DOI PMC

Luan Y., Xing G., Ren J., Gu J. Role of Hepatic Cytochrome P450 Enzymes in the Detoxication of Aristolochic Acid I; Effects on DNA Adduct, Mutation, and Tumor Formation. Genes Environ. Off. J. Jpn. Environ. Mutagen Soc. 2015;37:11. doi: 10.1186/s41021-015-0010-z. PubMed DOI PMC

Nedelcheva V., Gut I. P450 in the Rat and Man: Methods of Investigation, Substrate Specificities and Relevance to Cancer. Xenobiotica Fate Foreign Compd. Biol. Syst. 1994;24:1151–1175. doi: 10.3109/00498259409038673. PubMed DOI

Haduch A., Wójcikowski J., Daniel W.A. Effect of Neuroleptics on Cytochrome P450 2C11 (CYP2C11) in Rat Liver. Pharmacol. Rep. 2011;63:1491–1499. doi: 10.1016/S1734-1140(11)70713-7. PubMed DOI

Večeřa R., Zachařová A., Orolin J., Strojil J., Skottová N., Anzenbacher P. Fenofibrate-Induced Decrease of Expression of CYP2C11 and CYP2C6 in Rat. Biopharm. Drug Dispos. 2011;32:482–487. doi: 10.1002/bdd.774. PubMed DOI

Zachařová A., Siller M., Spičáková A., Anzenbacherová E., Skottová N., Anzenbacher P., Večeřa R. Rosuvastatin Suppresses the Liver Microsomal CYP2C11 and CYP2C6 Expression in Male Wistar Rats. Xenobiotica Fate Foreign Compd. Biol. Syst. 2012;42:731–736. doi: 10.3109/00498254.2012.661099. PubMed DOI

Goeptar A.R., Scheerens H., Vermeulen N.P. Oxygen and Xenobiotic Reductase Activities of Cytochrome P450. Crit. Rev. Toxicol. 1995;25:25–65. doi: 10.3109/10408449509089886. PubMed DOI

Hanukoglu I. Electron Transfer Proteins of Cytochrome P450 Systems. Adv. Mol. Cell Biol. 1996;14:29–56. doi: 10.1016/S1569-2558(08)60339-2. DOI

Laursen T., Jensen K., Møller B.L. Conformational Changes of the NADPH-Dependent Cytochrome P450 Reductase in the Course of Electron Transfer to Cytochromes P450. Biochim. Biophys. Acta. 2011;1814:132–138. doi: 10.1016/j.bbapap.2010.07.003. PubMed DOI

Pudney C.R., Khara B., Johannissen L.O., Scrutton N.S. Coupled Motions Direct Electrons along Human Microsomal P450 Chains. PLoS Biol. 2011;9:e1001222. doi: 10.1371/journal.pbio.1001222. PubMed DOI PMC

Jerabek P., Martinek V., Stiborova M. Theoretical Investigation of Differences in Nitroreduction of Aristolochic Acid I by Cytochromes P450 1A1, 1A2 and 1B1. Neuro Endocrinol. Lett. 2012;33((Suppl. S3)):25–32. PubMed

Levova K., Moserova M., Nebert D.W., Phillips D.H., Frei E., Schmeiser H.H., Arlt V.M., Stiborova M. NAD(P)H:Quinone Oxidoreductase Expression in Cyp1a-Knockout and CYP1A-Humanized Mouse Lines and Its Effect on Bioactivation of the Carcinogen Aristolochic Acid I. Toxicol. Appl. Pharmacol. 2012;265:360–367. doi: 10.1016/j.taap.2012.09.004. PubMed DOI

Stiborová M., Stiborová-Rupertová M., Borek-Dohalská L., Wiessler M., Frei E. Rat Microsomes Activating the Anticancer Drug Ellipticine to Species Covalently Binding to Deoxyguanosine in DNA Are a Suitable Model Mimicking Ellipticine Bioactivation in Humans. Chem. Res. Toxicol. 2003;16:38–47. doi: 10.1021/tx0200818. PubMed DOI

Stiborová M., Miksanová M., Sulc M., Rýdlová H., Schmeiser H.H., Frei E. Identification of a Genotoxic Mechanism for the Carcinogenicity of the Environmental Pollutant and Suspected Human Carcinogen O-Anisidine. Int. J. Cancer. 2005;116:667–678. doi: 10.1002/ijc.21122. PubMed DOI

Schmeiser H.H., Stiborova M., Arlt V.M. 32P-Postlabeling Analysis of DNA Adducts. Methods Mol. Biol. Clifton NJ. 2013;1044:389–401. doi: 10.1007/978-1-62703-529-3_21. PubMed DOI

Frame L.T., Ozawa S., Nowell S.A., Chou H.C., DeLongchamp R.R., Doerge D.R., Lang N.P., Kadlubar F.F. A Simple Colorimetric Assay for Phenotyping the Major Human Thermostable Phenol Sulfotransferase (SULT1A1) Using Platelet Cytosols. Drug Metab. Dispos. Biol. Fate Chem. 2000;28:1063–1068. PubMed

Krais A.M., Speksnijder E.N., Melis J.P.M., Singh R., Caldwell A., Gamboa da Costa G., Luijten M., Phillips D.H., Arlt V.M. Metabolic Activation of 2-Amino-1-Methyl-6-Phenylimidazo [4,5-b]Pyridine and DNA Adduct Formation Depends on P53: Studies in Trp53(+/+),Trp53(+/−) and Trp53(−/−) Mice. Int. J. Cancer. 2016;138:976–982. doi: 10.1002/ijc.29836. PubMed DOI PMC

Burke M.D., Thompson S., Weaver R.J., Wolf C.R., Mayer R.T. Cytochrome P450 Specificities of Alkoxyresorufin O-Dealkylation in Human and Rat Liver. Biochem. Pharmacol. 1994;48:923–936. doi: 10.1016/0006-2952(94)90363-8. PubMed DOI

Stiborová M., Martínek V., Rýdlová H., Hodek P., Frei E. Sudan I Is a Potential Carcinogen for Humans: Evidence for Its Metabolic Activation and Detoxication by Human Recombinant Cytochrome P450 1A1 and Liver Microsomes. Cancer Res. 2002;62:5678–5684. PubMed

Arlt V.M., Stiborova M., Hewer A., Schmeiser H.H., Phillips D.H. Human Enzymes Involved in the Metabolic Activation of the Environmental Contaminant 3-Nitrobenzanthrone: Evidence for Reductive Activation by Human NADPH:Cytochrome P450 Reductase. Cancer Res. 2003;63:2752–2761. PubMed

Kobayashi K., Urashima K., Shimada N., Chiba K. Substrate Specificity for Rat Cytochrome P450 (CYP) Isoforms: Screening with CDNA-Expressed Systems of the Rat. Biochem. Pharmacol. 2002;63:889–896. doi: 10.1016/S0006-2952(01)00843-7. PubMed DOI

Yamazaki H., Shimizu M., Nagashima T., Minoshima M., Murayama N. Rat Cytochrome P450 2C11 in Liver Microsomes Involved in Oxidation of Anesthetic Agent Propofol and Deactivated by Prior Treatment with Propofol. Drug Metab. Dispos. Biol. Fate Chem. 2006;34:1803–1805. doi: 10.1124/dmd.106.011627. PubMed DOI

Stiborová M., Frei E., Sopko B., Sopková K., Marková V., Lanková M., Kumstýrová T., Wiessler M., Schmeiser H.H. Human Cytosolic Enzymes Involved in the Metabolic Activation of Carcinogenic Aristolochic Acid: Evidence for Reductive Activation by Human NAD(P)H:Quinone Oxidoreductase. Carcinogenesis. 2003;24:1695–1703. doi: 10.1093/carcin/bgg119. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...