The influence of dicoumarol on the bioactivation of the carcinogen aristolochic acid I in rats

. 2014 May ; 29 (3) : 189-200. [epub] 20140305

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24598128

Grantová podpora
14329 Cancer Research UK - United Kingdom

UNLABELLED: Aristolochic acid I (AAI) is the major toxic component of the plant extract AA, which leads to the development of nephropathy and urothelial cancer in human. Individual susceptibility to AAI-induced disease might reflect variability in enzymes that metabolise AAI. In vitro NAD(P)H: quinone oxidoreductase (NQO1) is the most potent enzyme that activates AAI by catalyzing formation of AAI-DNA adducts, which are found in kidneys of patients exposed to AAI. Inhibition of renal NQO1 activity by dicoumarol has been shown in mice. Here, we studied the influence of dicoumarol on metabolic activation of AAI in Wistar rats in vivo. In contrast to previous in vitro findings, dicoumarol did not inhibit AAI-DNA adduct formation in rats. Compared with rats treated with AAI alone, 11- and 5.4-fold higher AAI-DNA adduct levels were detected in liver and kidney, respectively, of rats pretreated with dicoumarol prior to exposure to AAI. Cytosols and microsomes isolated from liver and kidney of these rats were analysed for activity and protein levels of enzymes known to be involved in AAI metabolism. The combination of dicoumarol with AAI induced NQO1 protein level and activity in both organs. This was paralleled by an increase in AAI-DNA adduct levels found in ex vivo incubations with cytosols from rats pretreated with dicoumarol compared to cytosols from untreated rats. Microsomal ex vivo incubations showed a lower AAI detoxication to its oxidative metabolite, 8-hydroxyaristolochic acid (AAIa), although cytochrome P450 (CYP) 1A was practically unchanged. Because of these unexpected results, we examined CYP2C activity in microsomes and found that treatment of rats with dicoumarol alone and in combination with AAI inhibited CYP2C6/11 in liver. Therefore, these results indicate that CYP2C enzymes might contribute to AAI detoxication.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Co-Exposure to Aristolochic Acids I and II Increases DNA Adduct Formation Responsible for Aristolochic Acid I-Mediated Carcinogenicity in Rats

. 2021 Sep 28 ; 22 (19) : . [epub] 20210928

The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro

. 2019 Nov ; 93 (11) : 3345-3366. [epub] 20191010

DNA Adducts Formed by Aristolochic Acid Are Unique Biomarkers of Exposure and Explain the Initiation Phase of Upper Urothelial Cancer

. 2017 Oct 14 ; 18 (10) : . [epub] 20171014

Balkan endemic nephropathy: an update on its aetiology

. 2016 Nov ; 90 (11) : 2595-2615. [epub] 20160819

Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo

. 2016 Feb 17 ; 344-346 () : 7-18. [epub] 20160201

Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1

. 2016 Feb 05 ; 17 (2) : 213. [epub] 20160205

A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches

. 2015 Nov 18 ; 16 (11) : 27561-75. [epub] 20151118

Mechanisms of enzyme-catalyzed reduction of two carcinogenic nitro-aromatics, 3-nitrobenzanthrone and aristolochic acid I: Experimental and theoretical approaches

. 2014 Jun 10 ; 15 (6) : 10271-95. [epub] 20140610

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...