DNA Adducts Formed by Aristolochic Acid Are Unique Biomarkers of Exposure and Explain the Initiation Phase of Upper Urothelial Cancer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29036902
PubMed Central
PMC5666826
DOI
10.3390/ijms18102144
PII: ijms18102144
Knihovny.cz E-zdroje
- Klíčová slova
- DNA adduct formation, aristolochic acid, carcinogenicity, mutagenesis, nephrotoxicity,
- MeSH
- adukty DNA metabolismus MeSH
- balkánská nefropatie etiologie metabolismus MeSH
- biologické markery * MeSH
- karcinogeny chemie metabolismus MeSH
- kyseliny aristolochové chemie metabolismus MeSH
- lidé MeSH
- náchylnost k nemoci MeSH
- nádorová transformace buněk genetika metabolismus MeSH
- urologické nádory etiologie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- adukty DNA MeSH
- biologické markery * MeSH
- karcinogeny MeSH
- kyseliny aristolochové MeSH
Aristolochic acid (AA) is a plant alkaloid that causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases frequently associated with upper urothelial cancer (UUC). This review summarizes the significance of AA-derived DNA adducts in the aetiology of UUC leading to specific A:T to T:A transversion mutations (mutational signature) in AAN/BEN-associated tumours, which are otherwise rare in individuals with UCC not exposed to AA. Therefore, such DNA damage produced by AA-DNA adducts is one rare example of the direct association of exposure and cancer development (UUC) in humans, confirming that the covalent binding of carcinogens to DNA is causally related to tumourigenesis. Although aristolochic acid I (AAI), the major component of the natural plant extract AA, might directly cause interstitial nephropathy, enzymatic activation of AAI to reactive intermediates capable of binding to DNA is a necessary step leading to the formation of AA-DNA adducts and subsequently AA-induced malignant transformation. Therefore, AA-DNA adducts can not only be utilized as biomarkers for the assessment of AA exposure and markers of AA-induced UUC, but also be used for the mechanistic evaluation of its enzymatic activation and detoxification. Differences in AA metabolism might be one of the reasons for an individual's susceptibility in the multi-step process of AA carcinogenesis and studying associations between activities and/or polymorphisms of the enzymes metabolising AA is an important determinant to identify individuals having a high risk of developing AA-mediated UUC.
Zobrazit více v PubMed
Poirier M. Chemical-induced DNA damage and human cancer risk. Nat. Rev. Cancer. 2004;4:630–637. doi: 10.1038/nrc1410. PubMed DOI
Poirier M.C. Chemical-induced DNA damage and human cancer risk. Discov. Med. 2012;14:283–288. doi: 10.1038/nrc1410. PubMed DOI PMC
Poirier M.C. Linking DNA adduct formation and human cancer risk in chemical carcinogenesis. Environ. Mol. Mutagen. 2016;57:499–507. doi: 10.1002/em.22030. PubMed DOI
Loeb L.A., Harris C.C. Advances in chemical carcinogenesis: A historical review and prospective. Cancer Res. 2008;68:6863–6872. doi: 10.1158/0008-5472.CAN-08-2852. PubMed DOI PMC
Guengerich F.P. Metabolism of chemical carcinogens. Carcinogenesis. 2000;21:345–351. doi: 10.1093/carcin/21.3.345. PubMed DOI
Phillips D.H. DNA adducts as markers of exposure and risk. Mutat. Res. 2005;577:284–292. doi: 10.1016/j.mrfmmm.2005.03.008. PubMed DOI
Phillips D.H. Cancer Handbook. Wiley; Hoboken, NJ, USA: 2007. The Formation of DNA Adducts.
Phillips D.H., Arlt V.M. Genotoxicity: Damage to DNA and its consequences. EXS. 2009;99:87–110. PubMed
Baird W.M., Hooven L.A., Mahadevan B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen. 2005;45:106–114. doi: 10.1002/em.20095. PubMed DOI
Turesky R.J., le Marchand L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: Lessons learned from aromatic amines. Chem. Res. Toxicol. 2011;24:1169–1214. doi: 10.1021/tx200135s. PubMed DOI PMC
Phillips D.H., Arlt V.M. The 32P-postlabeling assay for DNA adducts. Nat. Protoc. 2007;2:2772–2781. doi: 10.1038/nprot.2007.394. PubMed DOI
Phillips D.H., Venitt S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int. J. Cancer. 2012;131:2733–2753. doi: 10.1002/ijc.27827. PubMed DOI
Rappaport S.M., Li H., Grigoryan H., Funk W.E., Williams E.R. Adductomics: Characterizing exposures to reactive electrophiles. Toxicol. Lett. 2012;213:83–90. doi: 10.1016/j.toxlet.2011.04.002. PubMed DOI PMC
Harris C.C. 1995 Deichmann Lecture—p53 tumor suppressor gene: At the crossroads of molecular carcinogenesis, molecular epidemiology and cancer risk assessment. Toxicol. Lett. 1995;82–83:1–7. doi: 10.1016/0378-4274(95)03643-1. PubMed DOI
Wogan G.N., Kensler T.W., Groopman J.D. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2012;29:249–257. doi: 10.1080/19440049.2011.563370. PubMed DOI PMC
Arlt V.M., Stiborova M., Schmeiser H.H. Aristolochic acid as a probable human cancer hazard in herbal remedies: A review. Mutagenesis. 2002;17:265–277. doi: 10.1093/mutage/17.4.265. PubMed DOI
Stiborova M., Frei E., Arlt V.M., Schmeiser H.H. The role of biotransformation enzymes in the development of renal injury and urothelial cancer caused by aristolochic acid: urgent questions and difficult answers. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2009;153:5–11. doi: 10.5507/bp.2009.001. PubMed DOI
Stiborová M., Frei E., Arlt V.M., Schmeiser H.H. Metabolic activation of carcinogenic aristolochic acid, a risk factor for Balkan endemic nephropathy. Mutat. Res. 2008;658:55–67. doi: 10.1016/j.mrrev.2007.07.003. PubMed DOI
Stiborová M., Frei E., Schmeiser H.H. Biotransformation enzymes in development of renal injury and urothelial cancer caused by aristolochic acid. Kidney Int. 2008;73:1209–1211. doi: 10.1038/ki.2008.125. PubMed DOI
Stiborová M., Martínek V., Frei E., Arlt V.M., Schmeiser H.H. Enzymes metabolizing aristolochic acid and their contribution to the development of Aristolochic acid nephropathy and urothelial cancer. Curr. Drug Metab. 2013;14:695–705. doi: 10.2174/1389200211314060006. PubMed DOI
Stiborová M., Arlt V.M., Schmeiser H.H. Balkan endemic nephropathy: An update on its aetiology. Arch. Toxicol. 2016;90:2595–2615. doi: 10.1007/s00204-016-1819-3. PubMed DOI PMC
Schmeiser H.H., Stiborova M., Arlt V.M. Chemical and molecular basis of the carcinogenicity of Aristolochia plants. Curr. Opin. Drug Discov. Dev. 2009;12:141–148. PubMed
Gökmen M.R., Cosyns J.P., Arlt V.M., Stiborová M., Phillips D.H., Schmeiser H.H., Simmonds M.S.J., Look H.T., Vanherweghem J.L., Nortier J.L., et al. The epidemiology, diagnosis and management of Aristolochic Acid Nephropathy: A narrative review. Ann. Intern. Med. 2013;158:469–477. doi: 10.7326/0003-4819-158-6-201303190-00006. PubMed DOI
Grollman A.P. Aristolochic acid nephropathy: Harbinger of a global iatrogenic disease. Environ. Mol. Mutagen. 2013;54:1–7. doi: 10.1002/em.21756. PubMed DOI
Schmeiser H.H., Pool B.L., Wiessler M. Mutagenicity of the two main components of commercially available carcinogenic aristolochic acid in Salmonella typhimurium. Cancer Lett. 1984;23:97–101. doi: 10.1016/0304-3835(84)90067-3. PubMed DOI
Kohara A., Suzuki T., Honma M., Ohwada T., Hayashi M. Mutagenicity of aristolochic acid in the lambda/lacZ transgenic mouse (MutaMouse) Mutat. Res. 2002;515:63–72. doi: 10.1016/S1383-5718(01)00350-3. PubMed DOI
Nortier J.L., Martinez M.C., Schmeiser H.H., Arlt V.M., Bieler C.A., Petein M., Depierreux M.F., de Pauw L., Abramowicz D., Vereerstraeten P., et al. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi) N. Engl. J. Med. 2000;342:1686–1692. doi: 10.1056/NEJM200006083422301. PubMed DOI
Mei N., Arlt V.M., Phillips D.H., Heflich R.H., Chen T. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver. Mutat. Res. 2006;602:83–91. doi: 10.1016/j.mrfmmm.2006.08.004. PubMed DOI PMC
International Agency for Research on Cancer (IARC) Environmental Health Criteria Monographs. World Health Organization; Geneva, Switzerland: 2012. A review of human CARCINOGENS: Pharmaceuticals.
Schmeiser H.H., Kucab J.E., Arlt V.M., Phillips D.H., Hollstein M., Gluhovschi G., Gluhovschi C., Modilca M., Daminescu L., Petrica L., et al. Evidence of exposure to aristolochic acid in patients with urothelial cancer from a Balkan endemic nephropathy region of Romania. Environ. Mol. Mutagen. 2012;53:636–641. doi: 10.1002/em.21732. PubMed DOI
Hoang M.L., Chen C.H., Chen P.C., Roberts N.J., Dickman K.G., Yun B.H., Turesky R.J., Pu Y.S., Vogelstein B., Papadopoulos N., et al. Aristolochic acid in the etiology of renal cell carcinoma. Cancer Epidemiol. Biomark. Prev. 2016;25:1600–1608. doi: 10.1158/1055-9965.EPI-16-0219. PubMed DOI PMC
Rosenquist T.A., Grollman A.P. Mutational signature of aristolochic acid: Clue to the recognition of a global disease. DNA Repair. 2016;44:205–2011. doi: 10.1016/j.dnarep.2016.05.027. PubMed DOI
Vanherweghem J.L., Tielemans C., Abramowicz D., Depierreux M., Vanhaelen-Fastre R., Vanhaelen M., Dratwa M., Richard C., Vandervelde D., Verbeelen D., et al. Rapidly progressive interstitial renal fibrosis in young women: Association with slimming regimen including Chinese herbs. Lancet. 1993;341:387–391. doi: 10.1016/0140-6736(93)92984-2. PubMed DOI
Arlt V.M., Alunni-Perret V., Quatrehomme G., Ohayon P., Albano L., Gaïd H., Michiels J.F., Meyrier A., Cassuto E., Wiessler M., et al. Aristolochic acid (AA)-DNA adduct as marker of AA exposure and risk factor for AA nephropathy-associated cancer. Int. J. Cancer. 2004;111:977–980. doi: 10.1002/ijc.20316. PubMed DOI
Debelle F.D., Vanherweghem J.L., Nortier J.L. Aristolochic acid nephropathy: A worldwide problem. Kidney Int. 2008;74:158–169. doi: 10.1038/ki.2008.129. PubMed DOI
Cosyns J.P., Goebbels R.M., Liberton V., Schmeiser H.H., Bieler C.A., Bernard A.M. Chinese herbs nephropathy-associated slimming regimen induces tumours in the forestomach but no interstitial nephropathy in rats. Arch. Toxicol. 1998;72:738–743. doi: 10.1007/s002040050568. PubMed DOI
Cosyns J.P., Jadoul M., Squifflet J.P., Wese F.X., van Ypersele de Strihou C. Urothelial lesions in Chinese herb nephropathy. Am. J. Kidney Dis. 1999;33:1011–1017. doi: 10.1016/S0272-6386(99)70136-8. PubMed DOI
Jin K., Su K.K., Li T., Zhu X.Q., Wang Q., Ge R.S., Pan Z.F., Wu B.W., Ge L.J., Zhang Y.H., et al. Hepatic Premalignant Alterations Triggered by Human Nephrotoxin Aristolochic Acid I in Canines. Cancer Prev. Res. (Phila) 2016;9:324–334. doi: 10.1158/1940-6207.CAPR-15-0339. PubMed DOI
Li T., Jin K., Zhu D.Y., Li L., Mao Z.R., Wu B.W., Wang Y.F., Pan Z.F., Li L.J., Xiang C.S., et al. Premalignant alteration assessment in liver-like tissue derived from embryonic stem cells by aristolochic acid I exposure. Oncotarget. 2016;7:78872–78882. doi: 10.18632/oncotarget.12424. PubMed DOI PMC
Jadot I., Declèves A.E., Nortier J., Caron N. An integrated view of Aristolochic acid nephropathy: Update of the literature. Int. J. Mol. Sci. 2017;18:297. doi: 10.3390/ijms18020297. PubMed DOI PMC
Chan W., Pavlović N.M., Li W., Chan C.K., Liu J., Deng K., Wang Y., Milosavljević B., Kostić E.N. Quantitation of Aristolochic Acids in Corn, Wheat Grain, and Soil Samples Collected in Serbia: Identifying a Novel Exposure Pathway in the Etiology of Balkan Endemic Nephropathy. J. Agric. Food Chem. 2016;64:5928–5934. doi: 10.1021/acs.jafc.6b02203. PubMed DOI
Pfau W., Schmeiser H.H., Wiessler M. Aristolochic acid binds covalently to the exocyclic amino group of purine nucleotides in DNA. Carcinogenesis. 1990;11:313–319. doi: 10.1093/carcin/11.2.313. PubMed DOI
Pfau W., Schmeiser H.H., Wiessler M. 32P-postlabelling analysis of the DNA adducts formed by aristolochic acid I and II. Carcinogenesis. 1990;11:1627–1633. doi: 10.1093/carcin/11.9.1627. PubMed DOI
Schmeiser H.H., Bieler C.A., Wiessler M., van Ypersele de Strihou C., Cosyns J.P. Detection of DNA adducts formed by aristolochic acid in renal tissue from patients with Chinese herbs nephropathy. Cancer Res. 1996;56:2025–2028. PubMed
Schmeiser H.H., Frei E., Wiessler M., Stiborová M. Comparison of DNA adduct formation by aristolochic acids in various in vitro activation systems by 32P-post-labelling: Evidence for reductive activation by peroxidases. Carcinogenesis. 1997;18:1055–1062. doi: 10.1093/carcin/18.5.1055. PubMed DOI
Stiborová M., Fernando R.C., Schmeiser H.H., Frei E., Pfau W., Wiessler M. Characterization of DNA adducts formed by aristolochic acids in the target organ (forestomach) of rats by 32P-postlabelling analysis using different chromatographic procedures. Carcinogenesis. 1994;15:1187–1192. doi: 10.1093/carcin/15.6.1187. PubMed DOI
Stiborová M., Mareš J., Frei E., Arlt V.M., Martínek V., Schmeiser H.H. The human carcinogen aristolochic acid I is activated to form DNA adducts by human NAD(P)H:quinone oxidoreductase without the contribution of acetyltransferases or sulfotransferases. Environ. Mol. Mutagen. 2011;52:448–459. doi: 10.1002/em.20642. PubMed DOI
Lord G.M., Cook T., Arlt V.M., Schmeiser H.H., Williams G., Pusey C.D. Urothelial malignant disease and Chinese herbal nephropathy. Lancet. 2001;358:1515–1516. doi: 10.1016/S0140-6736(01)06576-X. PubMed DOI
Lord G.M., Hollstein M., Arlt V.M., Roufosse C., Pusey C.D., Cook T., Schmeiser H.H. DNA adducts and p53 mutations in a patient with aristolochic acid-associated nephropathy. Am. J. Kidney Dis. 2004;43:e11–e17. doi: 10.1053/j.ajkd.2003.11.024. PubMed DOI
Arlt V.M., Stiborova M., vom Brocke J., Simoes M.L., Lord G.M., Nortier J.L., Hollstein M., Phillips D.H., Schmeiser H.H. Aristolochic acid mutagenesis: Molecular clues to the aetiology of Balkan endemic nephropathy-associated urothelial cancer. Carcinogenesis. 2007;28:2253–2261. doi: 10.1093/carcin/bgm082. PubMed DOI
Aydin S., Dekairelle A.F., Ambroise J., Durant J.F., Heusterspreute M., Guiot Y., Cosyns J.P., Gala J.L. Unambiguous detection of multiple TP53 gene mutations in AAN-associated urothelial cancer in Belgium using laser capture microdissection. PLoS ONE. 2014;9:e106301. doi: 10.1371/journal.pone.0106301. PubMed DOI PMC
Aydin S., Ambroise J., Cosyns J.P., Gala J.L. TP53 mutations in p53-negative dysplastic urothelial cells from Belgian AAN patients: New evidence for aristolochic acid-induced molecular pathogenesis and carcinogenesis. Mutat. Res. 2017;818:17–26. doi: 10.1016/j.mrgentox.2017.03.003. PubMed DOI
Schmeiser H.H., Nortier J.L., Singh R., Gamboa da Costa G., Sennesael J., Cassuto-Viguier E., Ambrosetti D., Rorive S., Pozdzik A., Phillips D.H., et al. Exceptionally long-term persistence of DNA adducts formed by carcinogenic aristolochic acid I in renal tissue from patients with aristolochic acid nephropathy. Int. J. Cancer. 2014;135:562–567. doi: 10.1002/ijc.28681. PubMed DOI
Schmeiser H.H., Janssen J.W., Lyons J., Scherf H.R., Pfau W., Buchmann A., Bartram C.R., Wiessler M. Aristolochic acid activates ras genes in rat tumors at deoxyadenosine residue. Cancer Res. 1990;50:5464–5469. PubMed
Schmeiser H.H., Scherf H.R., Wiessler M. Activating mutations at codon 61 of the c-Ha-ras gene in thin-tissue sections of tumors induced by aristolochic acid in rats and mice. Cancer Lett. 1991;59:139–143. doi: 10.1016/0304-3835(91)90178-K. PubMed DOI
Wang Y., Meng F., Arlt V.M., Mei N., Chen T., Parsons B.L. Aristolochic acid-induced carcinogenesis examined by ACB-PCR quantification of H-Ras and K-Ras mutant fraction. Mutagenesis. 2011;26:619–628. doi: 10.1093/mutage/ger023. PubMed DOI
Wang Y., Arlt V.M., Roufosse C.A., McKim K.L., Myers M.B., Phillips D.H., Parsons B.L. ACB-PCR measurement of H-ras codon 61 CAA→CTA mutation provides an early indication of aristolochic acid I carcinogenic effect in tumor target tissues. Environ. Mol. Mutagen. 2012;53:495–504. doi: 10.1002/em.21710. PubMed DOI
Broschard T.H., Wiessler M., von der Lieth C.W., Schmeiser H.H. Translesional synthesis on DNA templates containing site-specifically placed deoxyadenosine and deoxyguanosine adducts formed by the plant carcinogen aristolochic acid. Carcinogenesis. 1994;15:2331–2340. doi: 10.1093/carcin/15.10.2331. PubMed DOI
Moriya M., Slade N., Brdar B., Medverec Z., Tomic K., Jelakovic B., Wu L., Truong S., Fernandes A., Grollman A.P. TP53 Mutational signature for aristolochic acid: An environmental carcinogen. Int. J. Cancer. 2011;129:1532–1536. doi: 10.1002/ijc.26077. PubMed DOI
Olivier M., Hollstein M., Schmeiser H.H., Straif K., Wild C.P. Upper urinary tract urothelial cancer: Where it is A:T. Nat. Rev. Cancer. 2012;12:503–504. doi: 10.1038/nrc3311. PubMed DOI
Arlt V.M., Pfohl-Leszkowicz A., Cosyns J., Schmeiser H.H. Analyses of DNA adducts formed by ochratoxin A and aristolochic acid in patients with Chinese herbs nephropathy. Mutat. Res. 2001;494:143–150. doi: 10.1016/S1383-5718(01)00188-7. PubMed DOI
Bieler C.A., Stiborová M., Wiessler M., Cosyns J.-P., van Ypersele de Strihou C., Schmeiser H.H. 32P-postlabelling analysis of DNA adducts formed by aristolochic acid in tissues from patients with Chinese herbs nephropathy. Carcinogenesis. 1997;18:1063–1067. doi: 10.1093/carcin/18.5.1063. PubMed DOI
Arlt V.M., Ferluga D., Stiborova M., Pfohl-Leszkowicz A., Vukelic M., Ceovic S., Schmeiser H.H., Cosyns J.P. Is aristolochic acid a risk factor for Balkan endemic nephropathy-associated urothelial cancer? Int. J. Cancer. 2002;101:500–502. doi: 10.1002/ijc.10602. PubMed DOI
Grollman A.P., Shibutani S., Moriya M., Miller F., Wu L., Moll U., Suzuki N., Fernandes A., Rosenquist T., Medverec Z., et al. Aristolochic acid and the etiology of endemic Balkan nephropathy. Proc. Natl. Acad. Sci. USA. 2007;104:12129–12134. doi: 10.1073/pnas.0701248104. PubMed DOI PMC
Jelaković B., Karanović S., Vuković-Lela I., Miller F., Edwards K.L., Nikolić J., Tomić K., Slade N., Brdar B., Turesky R.J., et al. Aristolactam-DNA adducts are a biomarker of environmental exposure to aristolochic acid. Kidney Int. 2012;81:559–567. doi: 10.1038/ki.2011.371. PubMed DOI PMC
Yun B.H., Rosenquist T.A., Sidorenko V., Iden C.R., Chen C.H., Pu Y.S., Bonala R., Johnson F., Dickman K.G., Grollman A.P., et al. Biomonitoring of aristolactam-DNA adducts in human tissues using ultra-performance liquid chromatography/ion-trap mass spectrometry. Chem. Res. Toxicol. 2012;25:1119–1131. doi: 10.1021/tx3000889. PubMed DOI PMC
Yun B.H., Rosenquist T.A., Nikolić J., Dragičević D., Tomić K., Jelaković B., Dickman K.G., Grollman A.P., Turesky R.J. Human formalin-fixed paraffin-embedded tissues: An untapped specimen for biomonitoring of carcinogen DNA adducts by mass spectrometry. Anal. Chem. 2013;85:4251–4258. doi: 10.1021/ac400612x. PubMed DOI PMC
Yun B.H., Sidorenko V.S., Rosenquist T.A., Dickman K.G., Grollman A.P., Turesky R.J. New approaches for biomonitoring exposure to the human carcinogen aristolochic acid. Toxicol. Res. (Camb) 2015;4:763–776. doi: 10.1039/C5TX00052A. PubMed DOI PMC
Schmeiser H.H., Stiborova M., Arlt V.M. 32P-postlabeling analysis of DNA adducts. Methods Mol. Biol. 2013;1044:389–401. doi: 10.1007/978-1-62703-529-3_21. PubMed DOI
Scelo G., Riazalhosseini Y., Greger L., Letourneau L., Gonzàlez-Porta M., Wozniak M.B., Bourgey M., Harnden P., Egevad L., Jackson S.M., et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat. Commun. 2014;5:5135. doi: 10.1038/ncomms6135. PubMed DOI
Turesky R.J., Yun B.H., Brennan P., Mates D., Jinga V., Harnden P., Banks R.E., Blanche H., Bihoreau M.T., Chopard P., et al. Aristolochic acid exposure in Romania and implications for renal cell carcinoma. Br. J. Cancer. 2016;114:76–80. doi: 10.1038/bjc.2015.402. PubMed DOI PMC
Chen C.H., Dickman K.G., Moriya M., Zavadil J., Sidorenko V.S., Edwards K.L., Gnatenko D.V., Wu L., Turesky R.J., Wu X.R., et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc. Natl. Acad. Sci. USA. 2012;109:8241–8246. doi: 10.1073/pnas.1119920109. PubMed DOI PMC
Chen C.H., Dickman K.G., Huang C.Y., Shun C.T., Tai H.C., Huang K.H., Wang S.M., Lee Y.J., Grollman A.P., Pu Y.S. Recurrence pattern and TP53 mutation in upper urinary tract urothelial carcinoma. Oncotarget. 2016;7:45225–45236. doi: 10.18632/oncotarget.9904. PubMed DOI PMC
Hoang M.L., Chen C.H., Sidorenko V.S., He J., Dickman K.G., Yun B.H., Moriya M., Niknafs N., Douville C., Karchin R., et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 2013;5:197ra102. doi: 10.1126/scitranslmed.3006200. PubMed DOI PMC
Poon S.L., Pang S.T., McPherson J.R., Yu W., Huang K.K., Guan P., Weng W.H., Siew E.Y., Liu Y., Heng H.L., et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 2013;5:197ra101. doi: 10.1126/scitranslmed.3006086. PubMed DOI
Sidorenko V.S., Yeo J.E., Bonala R.R., Johnson F., Schärer O.D., Grollman A.P. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res. 2012;40:2494–2505. doi: 10.1093/nar/gkr1095. PubMed DOI PMC
Nik-Zainal S., Kucab J.E., Morganella S., Glodzik D., Alexandrov L.B., Arlt V.M., Weninger A., Hollstein M., Stratton M.R., Phillips D.H. The genome as a record of environmental exposure. Mutagenesis. 2015;30:763–770. doi: 10.1093/mutage/gev073. PubMed DOI PMC
National Toxicology Program . Aristolochic Acids 12th Report on Carcinogens. National Toxicology Program; Public Health Service, US Department of Health and Human Services; Research Triangle Park, NC, USA: 2009. pp. 45–49.
Gillerot G., Jadoul M., Arlt V.M., van Ypersele de Strihou C., Schmeiser H.H., But P.P., Bieler C.A., Cosyns J.P. Aristolochic acid nephropathy in a Chinese patient: Time to abandon the term “Chinese herbs nephropathy”? Am. J. Kidney Dis. 2001;38:E26. doi: 10.1053/ajkd.2001.28624. PubMed DOI
Nortier J.L., Schmeiser H.H., Muniz Martinez M.C., Arlt V.M., Vervaet C., Garbar C.H., Daelemans P., Vanherweghem J.L. Invasive urothelial carcinoma after exposure to Chinese herbal medicine containing aristolochic acid may occur without severe renal failure. Nephrol. Dial. Transplant. 2003;18:426–428. doi: 10.1093/ndt/18.2.426. PubMed DOI
Lo S.H., Wong K.S., Arlt V.M., Phillips D.H., Lai C.K., Poon W.T., Chan C.K., Mo K.L., Chan K.W., Chan A. Detection of Herba Aristolochia Mollissemae in a patient with unexplained nephropathy. Am. J. Kidney Dis. 2005;45:407–410. doi: 10.1053/j.ajkd.2004.09.019. PubMed DOI
Yun B.H., Yao L., Jelaković B., Nikolić J., Dickman K.G., Grollman A.P., Rosenquist T.A., Turesky R.J. Formalin-fixed paraffin-embedded tissue as a source for quantitation of carcinogen DNA adducts: Aristolochic acid as a prototype carcinogen. Carcinogenesis. 2014;35:2055–2061. doi: 10.1093/carcin/bgu101. PubMed DOI PMC
Roumeguère T., Broeders N., Jayaswal A., Rorive S., Quackels T., Pozdzik A., Arlt V.M., Schmeiser H.H., Nortier J.L. Bacillus Calmette-Guerin therapy in non-muscle-invasive bladder carcinoma after renal transplantation for end-stage aristolochic acid nephropathy. Transpl. Int. 2015;28:199–205. doi: 10.1111/tri.12484. PubMed DOI
Bamias G., Boletis J. Balkan nephropathy: Evolution of our knowledge. Am. J. Kidney Dis. 2008;52:606–616. doi: 10.1053/j.ajkd.2008.05.024. PubMed DOI PMC
Tatu C.A., Orem W.H., Finkelman R.B., Feder G.L. The etiology of Balkan endemic nephropathy: Still more questions than answers. Environ. Health Perspect. 1998;106:689–700. PubMed PMC
Krumbiegel G., Hallensleben J., Mennicke W.H., Rittmann N. Studies on the metabolism of aristolochic acids I and II. Xenobiotica. 1987;17:981–991. doi: 10.3109/00498258709044197. PubMed DOI
Chan W., Cu L., Xu G., Cai Z. Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006;20:1755–1760. doi: 10.1002/rcm.2513. PubMed DOI
Chan W., Luo H.B., Zheng Y., Cheng Y.K., Cai Z. Investigation of the metabolism and reductive activation of carcinogenic aristolochic acid in rats. Drug Metab. Dispos. 2007;35:866–874. doi: 10.1124/dmd.106.013979. PubMed DOI
Schmeiser H.H., Pool B.L., Wiessler M. Identification and mutagenicity of metabolites of aristolochic acid formed by rat liver. Carcinogenesis. 1986;7:759–763. doi: 10.1093/carcin/7.1.59. PubMed DOI
Shibutani S., Bonala R.R., Rosenquist T., Rieger R., Suzuki N., Johnson F., Miller F., Grollman A.P. Detoxification of aristolochic acid I by O-demethylation: Less nephrotoxicity and genotoxicity of aristolochic acid Ia in rodents. Int. J. Cancer. 2010;127:1021–1027. doi: 10.1002/ijc.25141. PubMed DOI PMC
Dong H., Suzuki N., Torres M.C., Bonala R.R., Johnson F., Grollman A.P., Shibutani S. Quantitative determination of aristolochic acid-derived DNA adducts in rats using 32P-postlabeling/polyacrylamide gel electrophoresis analysis. Drug Metab. Dispos. 2006;34:1122–1127. doi: 10.1124/dmd.105.008706. PubMed DOI
Stiborová M., Levová K., Bárta F., Shi Z., Frei E., Schmeiser H.H., Nebert D.W., Phillips D.H., Arlt V.M. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol. Sci. 2012;125:345–358. doi: 10.1093/toxsci/kfr306. PubMed DOI PMC
Sistkova J., Hudecek J., Hodek P., Frei E., Schmeiser H.H., Stiborova M. Human cytochromes P450 1A1 and 1A2 participate in detoxication of carcinogenic aristolochic acid. Neuro Endocrinol. Lett. 2008;29:733–737. PubMed
Rosenquist T.A., Einolf H.J., Dickman K.G., Wang L., Smith A., Grollman A.P. Cytochrome P450 1A2 detoxicates aristolochic acid in the mouse. Drug Metab. Dispos. 2010;38:761–768. doi: 10.1124/dmd.110.032201. PubMed DOI PMC
Levová K., Mizerovská M., Kotrbová V., Šulc M., Henderson C.J., Wolf C.R., Philips D.H., Frei E., Schmeiser H.H., Mareš J., et al. Role of cytochromes P450 1A1/2 in detoxication and activation of carcinogenic aristolochic acid I: Studies with the hepatic NADPH:cytochrome P450 reductase null (HRN) mouse model. Toxicol. Sci. 2011;121:43–56. doi: 10.1093/toxsci/kfr050. PubMed DOI
Stiborová M., Bárta F., Levová K., Hodek P., Schmeiser H.H., Arlt V.M., Martínek V. A mechanism of O-demethylation of aristolochic acid I by cytochromes P450 and their contributions to this reaction in human and rat livers: Experimental and theoretical approaches. Int. J. Mol. Sci. 2015;16:27561–27575. doi: 10.3390/ijms161126047. PubMed DOI PMC
Arlt V.M., Levova K., Barta F., Shi Z., Evans J.D., Frei E., Schmeiser H.H., Nebert D.W., Phillips D.H., Stiborova M. Role of P450 1A1 and P450 1A2 in bioactivation versus detoxication of the renal carcinogen aristolochic acid I: Studies in Cyp1a1(−/−), Cyp1a2(−/−), and Cyp1a1/1a2(−/−) mice. Chem. Res. Toxicol. 2011;24:1710–1719. doi: 10.1021/tx200259y. PubMed DOI
Dračínská H., Bárta F., Levová K., Hudecová A., Moserová M., Schmeiser H.H., Kopka K., Frei E., Arlt V.M., Stiborová M. Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo. Toxicology. 2016;344:7–8. doi: 10.1016/j.tox.2016.01.011. PubMed DOI PMC
Xue X., Xiao Y., Zhu H., Wang H., Liu Y., Xie T., Ren J. Induction of P450 1A by 3-methylcholanthrene protects mice from aristolochic acid-I-induced acute renal injury. Nephrol. Dial. Transplant. 2008;23:3074–3081. doi: 10.1093/ndt/gfn262. PubMed DOI
Xiao Y., Ge M., Xue X., Wang H., Wu X., Li L., Liu L., Qi X., Zhang Y., Li Y., et al. Detoxication role of hepatic cytochrome P450s in the kidney toxicity induced by aristolochic acid. Kidney Int. 2008;73:1231–1239. doi: 10.1038/ki.2008.103. PubMed DOI
Martínek V., Bárta F., Hodek P., Frei E., Schmeiser H.H., Arlt V.M., Stiborová M. Comparison of the oxidation of carcinogenic aristolochic acid I and II by microsomal cytochromes P450 in vitro: Experimental and theoretical approaches. Monatshefte Chem. 2017 PubMed PMC
Stiborova M., Barta F., Dracinska H., Hudecova A., Hodek P., Balogova M., Mraz J., Duskova S., Schmeiser H.H., Arlt V.M. Treatment with a mixture of aristolochic acid I and II influences their genotoxicity and expression of biotransformation enzymes in rats in vivo. Toxicol. Lett. 2016;256:S96. doi: 10.1016/j.toxlet.2016.06.1416. DOI
Schmeiser H., Schoepe K.B., Wiessler M. DNA adduct formation of aristolochic acid I and II in vitro and in vivo. Carcinogenesis. 1988;9:297–303. doi: 10.1093/carcin/9.2.297. PubMed DOI
Shibutani S., Dong H., Suzuki N., Ueda S., Miller F., Grollman A.P. Selective toxicity of aristolochic acids I and II. Drug Metab. Dispos. 2007;35:1217–1222. doi: 10.1124/dmd.107.014688. PubMed DOI
Arlt V.M., Meinl W., Florian S., Nagy E., Barta F., Thomann M., Mrizova I., Krais A.M., Liu M., Richards M., et al. Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone. Arch. Toxicol. 2017;91:1957–1975. doi: 10.1007/s00204-016-1808-6. PubMed DOI PMC
Stiborová M., Frei E., Wiessler M., Schmeiser H.H. Human enzymes involved in the metabolic activation of carcinogenic aristolochic acids: Evidence for reductive activation by cytochromes P450 1A1 and 1A2. Chem. Res. Toxicol. 2001;14:1128–1137. doi: 10.1021/tx010059z. PubMed DOI
Stiborová M., Hájek M., Frei E., Schmeiser H.H. Carcinogenic and nephrotoxic alkaloids aristolochic acids upon activation by NADPH:cytochrome P450 reductase form adducts found in DNA of patients with Chinese herbs nephropathy. Gen. Physiol. Biophys. 2001;20:375–392. PubMed
Stiborová M., Frei E., Breuer A., Wiessler M., Schmeiser H.H. Evidence for reductive activation of carcinogenic aristolochic acids by prostaglandin H synthase—32P-postlabeling analysis of DNA adduct formation. Mutat. Res. 2001;493:149–160. doi: 10.1016/S1383-5718(01)00171-1. PubMed DOI
Stiborová M., Frei E., Sopko B., Wiessler M., Schmeiser H.H. Carcinogenic aristolochic acids upon activation by DT-diaphorase form adducts found in DNA of patients with Chinese herbs nephropathy. Carcinogenesis. 2002;23:617–625. doi: 10.1093/carcin/23.4.617. PubMed DOI
Martínek V., Kubickova B., Arlt V.M., Frei E., Schmeiser H.H., Hudeček J., Stiborova M. Comparison of activation of aristolochic acid I and II with NADPH:quinone oxidoreductase, sulphotransferases and N-acetyltransferases. Neuro Endocrinol. Lett. 2011;32(Suppl. S1):S57–S70. PubMed
Stiborová M., Hudeček J., Frei E., Schmeiser H.H. Contribution of biotransformation enzymes to the development of renal injury and urothelial cancer caused by aristolochic acid: Urgent questions, difficult answers. Interdiscip. Toxicol. 2008;1:8–12. doi: 10.2478/v10102-010-0023-1. PubMed DOI PMC
Stiborová M., Frei E., Sopko B., Sopková K., Marková V., Laňková M., Kumstýřová T., Wiessler M., Schmeiser H.H. Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: Evidence for reductive activation by human NAD(P)H:quinone oxidoreductase. Carcinogenesis. 2003;24:1695–1703. doi: 10.1093/carcin/bgg119. PubMed DOI
Chen M., Gong L., Qi X., Xing G., Luan Y., Wu Y., Xiao Y., Yao J., Li Y., Xue X., et al. Inhibition of renal NQO1 activity by dicoumarol suppresses nitroreduction of aristolochic acid I and attenuates its nephrotoxicity. Toxicol. Sci. 2011;122:288–296. doi: 10.1093/toxsci/kfr138. PubMed DOI
Stiborová M., Frei E., Arlt V.M., Schmeiser H.H. Knock-out and humanized mice as suitable tools to identify enzymes metabolizing the human carcinogen aristolochic acid. Xenobiotica. 2014;44:135–145. doi: 10.3109/00498254.2013.848310. PubMed DOI
Stiborová M., Frei E., Schmeiser H.H., Arlt V.M., Martínek V. Mechanisms of enzyme-catalyzed reduction of two carcinogenic nitro-aromatics, 3-nitrobenzanthrone and aristolochic acid I: Experimental and theoretical approaches. Int. J. Mol. Sci. 2014;15:10271–10295. doi: 10.3390/ijms150610271. PubMed DOI PMC
Stiborová M., Levová K., Bárta F., Šulc M., Frei E., Arlt V.M., Schmeiser H.H. The influence of dicoumarol on the bioactivation of the carcinogen aristolochic acid I in rats. Mutagenesis. 2014;29:189–200. doi: 10.1093/mutage/geu004. PubMed DOI
Sidorenko V.S., Attaluri S., Zaitseva I., Iden C.R., Dickman K.G., Johnson F., Grollman A.P. Bioactivation of the human carcinogen aristolochic acid. Carcinogenesis. 2014;35:1814–1822. doi: 10.1093/carcin/bgu095. PubMed DOI PMC
Hashimoto K., Zaitseva I.N., Bonala R., Attaluri S., Ozga K., Iden C.R., Johnson F., Moriya M., Grollman A.P., Sidorenko V.S. Sulfotransferase-1A1-dependent bioactivation of aristolochic acid I and N-hydroxyaristolactam I in human cells. Carcinogenesis. 2016;37:647–655. doi: 10.1093/carcin/bgw045. PubMed DOI PMC
Meinl W., Pabel U., Osterloh-Quiroz M., Hengstler J.G., Glatt H. Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int. J. Cancer. 2006;118:1090–1097. doi: 10.1002/ijc.21480. PubMed DOI
Stiborová M., Frei E., Hodek P., Wiessler M., Schmeiser H.H. Human hepatic and renal microsomes, cytochromes P450 1A1/2, NADPH:CYP reductase and prostaglandin H synthase mediate the formation of aristolochic acid DNA-adducts found in patients with urothelial cancer. Int. J. Cancer. 2005;113:189–197. doi: 10.1002/ijc.20564. PubMed DOI
Stiborová M., Sopko B., Hodek P., Frei E., Schmeiser H.H., Hudeček J. The binding of aristolochic acid I to the active site of human cytochromes P450 1A1 and 1A2 explains their potential to reductively activate this human carcinogen. Cancer Lett. 2005;229:193–204. doi: 10.1016/j.canlet.2005.06.038. PubMed DOI
Milichovský J., Bárta F., Schmeiser H.H., Arlt V.M., Frei E., Stiborová M., Martínek V. Active site mutations as a suitable tool contributing to explain a mechanism of aristolochic acid I nitroreduction by cytochromes P450 1A1, 1A2, and 1B1. Int. J. Mol. Sci. 2016;7:213. doi: 10.3390/ijms17020213. PubMed DOI PMC
Jerabek P., Martinek V., Stiborova M. Theoretical investigation of differences in nitroreduction of aristolochic acid I by cytochromes P450 1A1, 1A2 and 1B1. Neuro Endocrinol. Lett. 2012;33(Suppl. S3):25–32. PubMed
Guengerich F.P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 2001;14:611–650. doi: 10.1021/tx0002583. PubMed DOI
Guengerich F.P. Cytochrome P450 and chemical toxicology. Chem. Res. Toxicol. 2008;21:70–83. doi: 10.1021/tx700079z. PubMed DOI
Rendic S., DiCarlo F.J. Human cytochrome P450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 1997;29:413–480. doi: 10.3109/03602539709037591. PubMed DOI
Atanasova S.Y., von Ahsen N., Toncheva D.I., Dimitrov T.G., Oellerich M., Amstrong V.M. Genetic polymorphism of cytochrome P450 among patients with Balkan endemic nephropathy (BEN) Clin. Biochem. 2005;38:223–228. doi: 10.1016/j.clinbiochem.2004.12.002. PubMed DOI
Ross D., Kepa J.K., Winski S.L., Beall H.D., Anwar A., Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): Chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem. Biol. Interact. 2000;129:77–97. doi: 10.1016/S0009-2797(00)00199-X. PubMed DOI
Ross D. Quinone reductases multitasking in the metabolic world. Drug Metab. Rev. 2004;36:639–654. doi: 10.1081/DMR-200033465. PubMed DOI
Bárta F., Levová K., Frei E., Schmeiser H.H., Arlt V.M., Stiborová M. The effect of aristolochic acid I on NAD(P)H:quinone oxidoreductase expression in mice and rats—A comparative study. Mutat. Res. 2014;768:1–7. doi: 10.1016/j.mrgentox.2014.01.012. PubMed DOI
Toncheva D., Dimitrov T., Stojanova S. Etiology of Balkan endemic nephropathy: A multifactorial disease? Eur. J. Epidemiol. 1998;14:389–394. doi: 10.1023/A:1007445120729. PubMed DOI
Toncheva D.I., von Ahsen N., Atanasova S.Y., Dimitrov T.G., Armstrong V.M., Oellerich M. Identification of NQO1 and GSTs genotype frequencies in Bulgarian patients with Balkan endemic nephropathy. J. Nephrol. 2004;17:384–389. PubMed
He P., Court R.H., Greenblatt D.J., Von Moltke L.L. Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin. Pharmacol. Ther. 2005;77:373–387. doi: 10.1016/j.clpt.2004.11.112. PubMed DOI
Stefanović V., Toncheva D., Atanasova S., Polenaković M. Etiology of Balkan endemic nephropathy and associated urothelial cancer. Am. J. Nephrol. 2006;26:1–11. doi: 10.1159/000090705. PubMed DOI
Toncheva D. Genetic studies in BEN and associated urothelial cancers. Coll. Antropol. 2006;30(Suppl. S1):34.
Chen B., Bai Y., Sun M., Ni X., Yang Y., Yang Y., Zheng S., Xu F., Dai S. Glutathione S-transferases T1 null genotype is associated with susceptibility to aristolochic acid nephropathy. Int. Urol. Nephrol. 2012;44:301–307. doi: 10.1007/s11255-011-0082-z. PubMed DOI
Wang B., Wang J., Huang S.Q., Su H.H., Zhou S.F. Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance. Curr. Drug Metab. 2009;10:781–834. doi: 10.2174/138920009789895480. PubMed DOI
Reljic Z., Zlatovic M., Savic-Radojevic A., Pekmezovic T., Djukanovic L., Matic M., Pljesa-Ercegovac M., Mimic-Oka J., Opsenica D., Simic T. Is increased susceptibility to Balkan endemic nephropathy in carriers of common GSTA1 (*A/*B) polymorphism linked with the catalytic role of GSTA1 in ochratoxin a biotransformation? Serbian case control study and in silico analysis. Toxins. 2014;6:2348–2362. doi: 10.3390/toxins6082348. PubMed DOI PMC
The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro