Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone

. 2017 Apr ; 91 (4) : 1957-1975. [epub] 20160824

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27557898

Grantová podpora
14329 Cancer Research UK - United Kingdom

Odkazy

PubMed 27557898
PubMed Central PMC5364269
DOI 10.1007/s00204-016-1808-6
PII: 10.1007/s00204-016-1808-6
Knihovny.cz E-zdroje

Exposure to aristolochic acid (AA) causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN). Conflicting results have been found for the role of human sulfotransferase 1A1 (SULT1A1) contributing to the metabolic activation of aristolochic acid I (AAI) in vitro. We evaluated the role of human SULT1A1 in AA bioactivation in vivo after treatment of transgenic mice carrying a functional human SULT1A1-SULT1A2 gene cluster (i.e. hSULT1A1/2 mice) and Sult1a1(-/-) mice with AAI and aristolochic acid II (AAII). Both compounds formed characteristic DNA adducts in the intact mouse and in cytosolic incubations in vitro. However, we did not find differences in AAI-/AAII-DNA adduct levels between hSULT1A1/2 and wild-type (WT) mice in all tissues analysed including kidney and liver despite strong enhancement of sulfotransferase activity in both kidney and liver of hSULT1A1/2 mice relative to WT, kidney and liver being major organs involved in AA metabolism. In contrast, DNA adduct formation was strongly increased in hSULT1A1/2 mice compared to WT after treatment with 3-nitrobenzanthrone (3-NBA), another carcinogenic aromatic nitro compound where human SULT1A1/2 is known to contribute to genotoxicity. We found no differences in AAI-/AAII-DNA adduct formation in Sult1a1(-/-) and WT mice in vivo. Using renal and hepatic cytosolic fractions of hSULT1A1/2, Sult1a1(-/-) and WT mice, we investigated AAI-DNA adduct formation in vitro but failed to find a contribution of human SULT1A1/2 or murine Sult1a1 to AAI bioactivation. Our results indicate that sulfo-conjugation catalysed by human SULT1A1 does not play a role in the activation pathways of AAI and AAII in vivo, but is important in 3-NBA bioactivation.

Zobrazit více v PubMed

Alnouti Y, Klaassen CD. Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicol Sci. 2006;93(2):242–255. doi: 10.1093/toxsci/kfl050. PubMed DOI

Arlt VM. 3-Nitrobenzanthrone, a potential human cancer hazard in diesel exhaust and urban air pollution: a review of the evidence. Mutagenesis. 2005;20(6):399–410. doi: 10.1093/mutage/gei057. PubMed DOI

Arlt VM, Bieler CA, Mier W, Wiessler M, Schmeiser HH. DNA adduct formation by the ubiquitous environmental contaminant 3-nitrobenzanthrone in rats determined by (32)P-postlabeling. Int J Cancer. 2001;93(3):450–454. doi: 10.1002/ijc.1346. PubMed DOI

Arlt VM, Ferluga D, Stiborova M, et al. Is aristolochic acid a risk factor for Balkan endemic nephropathy-associated urothelial cancer? Int J Cancer. 2002;101(5):500–502. doi: 10.1002/ijc.10602. PubMed DOI

Arlt VM, Glatt H, Muckel E, et al. Metabolic activation of the environmental contaminant 3-nitrobenzanthrone by human acetyltransferases and sulfotransferase. Carcinogenesis. 2002;23(11):1937–1945. doi: 10.1093/carcin/23.11.1937. PubMed DOI

Arlt VM, Stiborova M, Schmeiser HH. Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis. 2002;17(4):265–277. doi: 10.1093/mutage/17.4.265. PubMed DOI

Arlt VM, Glatt H, Muckel E, et al. Activation of 3-nitrobenzanthrone and its metabolites by human acetyltransferases, sulfotransferases and cytochrome P450 expressed in Chinese hamster V79 cells. Int J Cancer. 2003;105(5):583–592. doi: 10.1002/ijc.11143. PubMed DOI

Arlt VM, Stiborova M, Henderson CJ, et al. Environmental pollutant and potent mutagen 3-nitrobenzanthrone forms DNA adducts after reduction by NAD(P)H:quinone oxidoreductase and conjugation by acetyltransferases and sulfotransferases in human hepatic cytosols. Cancer Res. 2005;65(7):2644–2652. doi: 10.1158/0008-5472.CAN-04-3544. PubMed DOI

Arlt VM, Schmeiser HH, Osborne MR, et al. Identification of three major DNA adducts formed by the carcinogenic air pollutant 3-nitrobenzanthrone in rat lung at the C8 and N2 position of guanine and at the N6 position of adenine. Int J Cancer. 2006;118(9):2139–2146. doi: 10.1002/ijc.21622. PubMed DOI

Arlt VM, Stiborova M, vom Brocke J, et al. Aristolochic acid mutagenesis: molecular clues to the aetiology of Balkan endemic nephropathy-associated urothelial cancer. Carcinogenesis. 2007;28(11):2253–2261. doi: 10.1093/carcin/bgm082. PubMed DOI

Arlt VM, Stiborova M, Henderson CJ, et al. Metabolic activation of benzo[a]pyrene in vitro by hepatic cytochrome P450 contrasts with detoxification in vivo: experiments with hepatic cytochrome P450 reductase null mice. Carcinogenesis. 2008;29(3):656–665. doi: 10.1093/carcin/bgn002. PubMed DOI

Arlt VM, Levova K, Barta F, et al. Role of P450 1A1 and P450 1A2 in bioactivation versus detoxication of the renal carcinogen aristolochic acid I: studies in Cyp1a1−/−, Cyp1a2−/−, and Cyp1a1/1a2−/− mice. Chem Res Toxicol. 2011;24(10):1710–1719. doi: 10.1021/tx200259y. PubMed DOI

Arlt VM, Poirier MC, Sykes SE, et al. Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling. Toxicol Lett. 2012;213(2):160–166. doi: 10.1016/j.toxlet.2012.06.016. PubMed DOI PMC

Arlt VM, Henderson CJ, Wolf CR, Stiborova M, Phillips DH. The Hepatic Reductase Null (HRN) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. Toxicol Res. 2015;4(3):548–562. doi: 10.1039/C4TX00116H. DOI

Arlt VM, Krais AM, Godschalk RW, et al. Pulmonary inflammation impacts on CYP1A1-mediated respiratory tract DNA damage induced by the carcinogenic air pollutant benzo[a]pyrene. Toxicol Sci. 2015;146:213–225. doi: 10.1093/toxsci/kfv086. PubMed DOI PMC

Baudoux TE, Pozdzik AA, Arlt VM, et al. Probenecid prevents acute tubular necrosis in a mouse model of aristolochic acid nephropathy. Kidney Int. 2012;82(10):1105–1113. doi: 10.1038/ki.2012.264. PubMed DOI

Bendadani C, Meinl W, Monien B, et al. Determination of sulfotransferase forms involved in the metabolic activation of the genotoxicant 1-hydroxymethylpyrene using bacterially expressed enzymes and genetically modified mouse models. Chem Res Toxicol. 2014;27(6):1060–1069. doi: 10.1021/tx500129g. PubMed DOI

Bendadani C, Meinl W, Monien BH, Dobbernack G, Glatt H. The carcinogen 1-methylpyrene forms benzylic DNA adducts in mouse and rat tissues in vivo via a reactive sulphuric acid ester. Arch Toxicol. 2014;88(3):815–821. PubMed

Bieler CA, Stiborova M, Wiessler M, Cosyns JP, van Ypersele de Strihou C, Schmeiser HH. 32P-post-labelling analysis of DNA adducts formed by aristolochic acid in tissues from patients with Chinese herbs nephropathy. Carcinogenesis. 1997;18(5):1063–1067. doi: 10.1093/carcin/18.5.1063. PubMed DOI

Chan W, Cui L, Xu G, Cai Z. Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(11):1755–1760. doi: 10.1002/rcm.2513. PubMed DOI

Chan W, Luo HB, Zheng Y, Cheng YK, Cai Z. Investigation of the metabolism and reductive activation of carcinogenic aristolochic acids in rats. Drug Metab Dispos. 2007;35:866–874. doi: 10.1124/dmd.106.013979. PubMed DOI

Dobbernack G, Meinl W, Schade N, et al. Altered tissue distribution of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-DNA adducts in mice transgenic for human sulfotransferases 1A1 and 1A2. Carcinogenesis. 2011;32(11):1734–1740. doi: 10.1093/carcin/bgr204. PubMed DOI

Frame LT, Ozawa S, Nowell SA, et al. A simple colorimetric assay for phenotyping the major human thermostable phenol sulfotransferase (SULT1A1) using platelet cytosols. Drug Metab Dispos. 2000;28(9):1063–1068. PubMed

Glatt H, Meinl W. Use of genetically manipulated Salmonella typhimurium strains to evaluate the role of sulfotransferases and acetyltransferases in nitrofen mutagenicity. Carcinogenesis. 2004;25(5):779–786. doi: 10.1093/carcin/bgh070. PubMed DOI

Glatt H, Sabbioni G, Monien BH, Meinl W. Use of genetically manipulated Salmonella typhimurium strains to evaluate the role of human sulfotransferases in the bioactivation of nitro- and aminotoluenes. Environ Mol Mutagen. 2016;57(4):299–311. doi: 10.1002/em.22005. PubMed DOI

Gokmen MR, Cosyns JP, Arlt VM, et al. The epidemiology, diagnosis, and management of aristolochic acid nephropathy: a narrative review. Ann Int Med. 2013;158(6):469–477. doi: 10.7326/0003-4819-158-6-201303190-00006. PubMed DOI

Herrmann K, Engst W, Meinl W, et al. Formation of hepatic DNA adducts by methyleugenol in mouse models: drastic decrease by Sult1a1 knockout and strong increase by transgenic human SULT1A1/2. Carcinogenesis. 2014;35(4):935–941. doi: 10.1093/carcin/bgt408. PubMed DOI

Krais AM, Muhlbauer KR, Kucab JE, et al. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts. Toxicol In Vitro. 2015;29(1):34–43. doi: 10.1016/j.tiv.2014.09.004. PubMed DOI PMC

Krais AM, Speksnijder EN, Melis JP, et al. The impact of p53 on DNA damage and metabolic activation of the environmental carcinogen benzo[a]pyrene: effects in Trp53(+/+), Trp53(+/−) and Trp53(−/−) mice. Arch Toxicol. 2016;90(4):839–851. doi: 10.1007/s00204-015-1531-8. PubMed DOI PMC

Krais AM, Speksnijder EN, Melis JP, et al. Metabolic activation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine and DNA adduct formation depends on p53: studies in Trp53(+/+), Trp53(+/−) and Trp53(−/−) mice. Int J Cancer. 2016;138(4):976–982. doi: 10.1002/ijc.29836. PubMed DOI PMC

Krumbiegel G, Hallensleben J, Mennicke WH, Rittmann N, Roth HJ. Studies on the metabolism of aristolochic acids I and II. Xenobiotica. 1987;17(8):981–991. doi: 10.3109/00498258709044197. PubMed DOI

Kucab JE, Zwart EP, van Steeg H, et al. TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts. DNA Repair. 2016;39:21–33. doi: 10.1016/j.dnarep.2015.11.004. PubMed DOI PMC

Levova K, Moserova M, Kotrbova V, et al. Role of cytochromes P450 1A1/2 in detoxication and activation of carcinogenic aristolochic acid I: studies with the hepatic NADPH:cytochrome P450 reductase null (HRN) mouse model. Toxicol Sci. 2011;121(1):43–56. doi: 10.1093/toxsci/kfr050. PubMed DOI

Levova K, Moserova M, Nebert DW, et al. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I. Toxicol Appl Pharmacol. 2012;265(3):360–367. doi: 10.1016/j.taap.2012.09.004. PubMed DOI

Lord GM, Hollstein M, Arlt VM, et al. DNA adducts and p53 mutations in a patient with aristolochic acid-associated nephropathy. Am J Kidney Dis. 2004;43(4):e11–e17. doi: 10.1053/j.ajkd.2003.11.024. PubMed DOI

Martin FL, Patel II, Sozeri O, et al. Constitutive expression of bioactivating enzymes in normal human prostate suggests a capability to activate pro-carcinogens to DNA-damaging metabolites. Prostate. 2010;70(14):1586–1599. doi: 10.1002/pros.21194. PubMed DOI

Martinek V, Kubickova B, Arlt VM, et al. Comparison of activation of aristolochic acid I and II with NADPH:quinone oxidoreductase, sulphotransferases and N-acetyltranferases. Neuro Endocrinol Lett. 2011;32(Suppl 1):57–70. PubMed

Meinl W, Pabel U, Osterloh-Quiroz M, Hengstler JG, Glatt H. Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int J Cancer. 2006;118(5):1090–1097. doi: 10.1002/ijc.21480. PubMed DOI

Mengs U, Lang W, Poch JA. The carcinogenic action of aristolochic acid in rats. Arch Toxicol. 1982;51(2):107–119. doi: 10.1007/BF00302751. DOI

Mizerovska J, Dracinska H, Frei E, Schmeiser HH, Arlt VM, Stiborova M. Induction of biotransformation enzymes by the carcinogenic air-pollutant 3-nitrobenzanthrone in liver, kidney and lung, after intra-tracheal instillation in rats. Mutat Res. 2011;720(1–2):34–41. doi: 10.1016/j.mrgentox.2010.12.003. PubMed DOI

Nebert DW, Shi Z, Galvez-Peralta M, Uno S, Dragin N. Oral benzo[a]pyrene: understanding pharmacokinetics, detoxication, and consequences–Cyp1 knockout mouse lines as a paradigm. Mol Pharmacol. 2013;84(3):304–313. doi: 10.1124/mol.113.086637. PubMed DOI PMC

Nik-Zainal S, Kucab JE, Morganella S, et al. The genome as a record of environmental exposure. Mutagenesis. 2015;30(6):763–770. PubMed PMC

Nortier JL, Martinez MC, Schmeiser HH, et al. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi) N Engl J Med. 2000;342(23):1686–1692. doi: 10.1056/NEJM200006083422301. PubMed DOI

Odell AF, Odell LR, Askham JM, Alogheli H, Ponnambalam S, Hollstein M. A novel p53 mutant found in iatrogenic urothelial cancers is dysfunctional and can be rescued by a second-site global suppressor mutation. J Biol Chem. 2013;288(23):16704–16714. doi: 10.1074/jbc.M112.443168. PubMed DOI PMC

Phillips DH. On the origins and development of the (32)P-postlabelling assay for carcinogen-DNA adducts. Cancer Lett. 2013;334(1):5–9. doi: 10.1016/j.canlet.2012.11.027. PubMed DOI

Phillips DH, Arlt VM. 32P-postlabeling analysis of DNA adducts. Meth Mol Biol. 2014;1105:127–138. doi: 10.1007/978-1-62703-739-6_10. PubMed DOI

Poon SL, Pang ST, McPherson JR, et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med. 2013;5(197):197ra101. doi: 10.1126/scitranslmed.3006086. PubMed DOI

Rendic S, Guengerich FP. Contributions of human enzymes in carcinogen metabolism. Chem Res Toxicol. 2012;25(7):1316–1383. doi: 10.1021/tx300132k. PubMed DOI PMC

Sachse B, Meinl W, Glatt H, Monien BH. The effect of knockout of sulfotransferases 1a1 and 1d1 and of transgenic human sulfotransferases 1A1/1A2 on the formation of DNA adducts from furfuryl alcohol in mouse models. Carcinogenesis. 2014;35(10):2339–2345. doi: 10.1093/carcin/bgu152. PubMed DOI

Schmeiser HH, Bieler CA, Wiessler M, van Ypersele de Strihou C, Cosyns JP. Detection of DNA adducts formed by aristolochic acid in renal tissue from patients with Chinese herbs nephropathy. Cancer Res. 1996;56(9):2025–2028. PubMed

Schmeiser HH, Stiborova M, Arlt VM. Chemical and molecular basis of the carcinogenicity of Aristolochia plants. Curr Opin Drug Dis Devel. 2009;12(1):141–148. PubMed

Schmeiser HH, Kucab JE, Arlt VM, et al. Evidence of exposure to aristolochic acid in patients with urothelial cancer from a Balkan endemic nephropathy region of Romania. Environ Mol Mutagen. 2012;53(8):636–641. doi: 10.1002/em.21732. PubMed DOI

Schmeiser HH, Stiborova M, Arlt VM. (32)P-postlabeling analysis of DNA adducts. Methods Mol Biol. 2013;1044:389–401. doi: 10.1007/978-1-62703-529-3_21. PubMed DOI

Schmeiser HH, Nortier JL, Singh R, et al. Exceptionally long-term persistence of DNA adducts formed by carcinogenic aristolochic acid I in renal tissue from patients with aristolochic acid nephropathy. Int J Cancer. 2014;135(2):502–507. doi: 10.1002/ijc.28681. PubMed DOI

Sidorenko VS, Attaluri S, Zaitseva I, et al. Bioactivation of the human carcinogen aristolochic acid. Carcinogenesis. 2014;35(8):1814–1822. doi: 10.1093/carcin/bgu095. PubMed DOI PMC

Stiborova M, Frei E, Wiessler M, Schmeiser HH. Human enzymes involved in the metabolic activation of carcinogenic aristolochic acids: evidence for reductive activation by cytochromes P450 1A1 and 1A2. Chem Res Toxicol. 2001;14(8):1128–1137. doi: 10.1021/tx010059z. PubMed DOI

Stiborova M, Hajek M, Frei E, Schmeiser HH. Carcinogenic and nephrotoxic alkaloids aristolochic acids upon activation by NADPH:cytochrome P450 reductase form adducts found in DNA of patients with Chinese herbs nephropathy. Gen Physiol Biophys. 2001;20(4):375–392. PubMed

Stiborova M, Frei E, Sopko B, Wiessler M, Schmeiser HH. Carcinogenic aristolochic acids upon activation by DT-diaphorase form adducts found in DNA of patients with Chinese herbs nephropathy. Carcinogenesis. 2002;23(4):617–625. doi: 10.1093/carcin/23.4.617. PubMed DOI

Stiborova M, Frei E, Sopko B, et al. Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H: quinone oxidoreductase. Carcinogenesis. 2003;24(10):1695–1703. doi: 10.1093/carcin/bgg119. PubMed DOI

Stiborova M, Frei E, Hodek P, Wiessler M, Schmeiser HH. Human hepatic and renal microsomes, cytochromes P450 1A1/2, NADPH:cytochrome P450 reductase and prostaglandin H synthase mediate the formation of aristolochic acid-DNA adducts found in patients with urothelial cancer. Int J Cancer. 2005;113(2):189–197. doi: 10.1002/ijc.20564. PubMed DOI

Stiborova M, Mareis J, Frei E, Arlt VM, Martinek V, Schmeiser HH. The human carcinogen aristolochic acid i is activated to form DNA adducts by human NAD(P)H: quinone oxidoreductase without the contribution of acetyltransferases or sulfotransferases. Environ Mol Mutagen. 2011;52(6):448–459. doi: 10.1002/em.20642. PubMed DOI

Stiborova M, Levova K, Barta F, et al. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol Sci. 2012;125(2):345–358. doi: 10.1093/toxsci/kfr306. PubMed DOI PMC

Stiborova M, Martinek V, Frei E, Arlt VM, Schmeiser HH. Enzymes metabolizing aristolochic acid and their contribution to the development of aristolochic acid nephropathy and urothelial cancer. Curr Drug Metab. 2013;14(6):695–705. doi: 10.2174/1389200211314060006. PubMed DOI

Stiborova M, Frei E, Arlt VM, Schmeiser HH. Knockout and humanized mice as suitable tools to identify enzymes metabolizing the human carcinogen aristolochic acid. Xenobiotica. 2014;44(2):135–145. doi: 10.3109/00498254.2013.848310. PubMed DOI

Stiborova M, Frei E, Schmeiser HH, Arlt VM, Martinek V. Mechanisms of enzyme-catalyzed reduction of two carcinogenic nitro-aromatics, 3-nitrobenzanthrone and aristolochic acid I: experimental and theoretical approaches. Int J Mol Sci. 2014;15(6):10271–10295. doi: 10.3390/ijms150610271. PubMed DOI PMC

Teubner W, Meinl W, Florian S, Kretzschmar M, Glatt H. Identification and localization of soluble sulfotransferases in the human gastrointestinal tract. Biochem J. 2007;404(2):207–215. doi: 10.1042/BJ20061431. PubMed DOI PMC

Wang Y, Arlt VM, Roufosse CA, et al. ACB-PCR measurement of H-ras codon 61 CAA → CTA mutation provides an early indication of aristolochic acid I carcinogenic effect in tumor target tissues. Environ Mol Mutagen. 2012;53(7):495–504. doi: 10.1002/em.21710. PubMed DOI

Wohak LE, Krais AM, Kucab JE, et al. Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch Toxicol. 2016;90(2):291–304. doi: 10.1007/s00204-014-1409-1. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...