Knockout and humanized mice as suitable tools to identify enzymes metabolizing the human carcinogen aristolochic acid

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid24152141

Grantová podpora
14329 Cancer Research UK - United Kingdom

UNLABELLED: 1. Aristolochic acid I (AAI) is the predominant component in plant extract of Aristolochia genus that is involved in development of aristolochic acid nephropathy, Balkan endemic nephropathy and urothelial cancer. The diseases do not develop in all individuals exposed to AAI and patients exhibit different clinical outcomes. Differences in the activities of enzymes catalyzing the metabolism of AAI might be one of the reasons for this individual susceptibility. 2. Understanding which human enzymes are involved in reductive activation of AAI generating AAI-DNA adducts, and/or its detoxication to the O-demethylated metabolite, aristolochic acid Ia (AAIa), is necessary in the assessment of the susceptibility to this compound. 3. This review summarizes the results of the latest studies utilizing genetically engineered mouse models to identify which human and rodent enzymes catalyze the reductive activation of AAI to AAI-DNA adducts and its oxidative detoxication to AAIa in vivo. 4. The use of hepatic cytochrome P450 (Cyp) reductase null (HRN) mice, in which NADPH:Cyp oxidoreductase (Por) is deleted in hepatocytes, Cyp1a1((-/-)), Cyp1a2((-/-)) single-knockout, Cyp1a1/1a2((-/-)) double-knockout and CYP1A-humanized mice revealed that mouse and human CYP1A1 and 1A2, besides mouse NAD(P)H: quinone oxidoreductase, were involved in the activation of AAI but CYP1A1 and 1A2 also oxidatively detoxified AAI.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Co-Exposure to Aristolochic Acids I and II Increases DNA Adduct Formation Responsible for Aristolochic Acid I-Mediated Carcinogenicity in Rats

. 2021 Sep 28 ; 22 (19) : . [epub] 20210928

The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro

. 2019 Nov ; 93 (11) : 3345-3366. [epub] 20191010

DNA Adducts Formed by Aristolochic Acid Are Unique Biomarkers of Exposure and Explain the Initiation Phase of Upper Urothelial Cancer

. 2017 Oct 14 ; 18 (10) : . [epub] 20171014

Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone

. 2017 Apr ; 91 (4) : 1957-1975. [epub] 20160824

Balkan endemic nephropathy: an update on its aetiology

. 2016 Nov ; 90 (11) : 2595-2615. [epub] 20160819

Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo

. 2016 Feb 17 ; 344-346 () : 7-18. [epub] 20160201

Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1

. 2016 Feb 05 ; 17 (2) : 213. [epub] 20160205

A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches

. 2015 Nov 18 ; 16 (11) : 27561-75. [epub] 20151118

Pulmonary Inflammation Impacts on CYP1A1-Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo[a]pyrene

. 2015 Aug ; 146 (2) : 213-25. [epub] 20150423

Mechanisms of enzyme-catalyzed reduction of two carcinogenic nitro-aromatics, 3-nitrobenzanthrone and aristolochic acid I: Experimental and theoretical approaches

. 2014 Jun 10 ; 15 (6) : 10271-95. [epub] 20140610

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace