Pden_5119, annotated as an NADPH-dependent FMN reductase, shows homology to proteins assisting in utilization of alkanesulfonates in other bacteria. Here, we report that inactivation of the pden_5119 gene increased susceptibility to oxidative stress, decreased growth rate and increased growth yield; growth on lower alkanesulfonates as sulfur sources was not specifically influenced. Pden_5119 transcript rose in response to oxidative stressors, respiratory chain inhibitors and terminal oxidase downregulation. Kinetic analysis of a fusion protein suggested a sequential mechanism in which FMN binds first, followed by NADH. The affinity of flavin toward the protein decreased only slightly upon reduction. The observed strong viscosity dependence of kcat demonstrated that reduced FMN formed tends to remain bound to the enzyme where it can be re-oxidized by oxygen or, less efficiently, by various artificial electron acceptors. Stopped flow data were consistent with the enzyme-FMN complex being a functional oxidase that conducts the reduction of oxygen by NADH. Hydrogen peroxide was identified as the main product. As shown by isotope effects, hydride transfer occurs from the pro-S C4 position of the nicotinamide ring and partially limits the overall turnover rate. Collectively, our results point to a role for the Pden_5119 protein in maintaining the cellular redox state.
- MeSH
- flavinadenindinukleotid metabolismus MeSH
- flavinmononukleotid metabolismus MeSH
- flaviny metabolismus MeSH
- FMN-reduktasa genetika metabolismus MeSH
- NADP MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- oxidace-redukce MeSH
- Paracoccus denitrificans genetika metabolismus MeSH
- sekvence aminokyselin genetika MeSH
- terciární struktura proteinů MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.
- MeSH
- adukty DNA metabolismus MeSH
- aromatické hydroxylasy metabolismus MeSH
- cytochrom-B(5)-reduktasa nedostatek genetika MeSH
- cytochromy b5 nedostatek genetika MeSH
- elipticiny metabolismus farmakologie MeSH
- fenotyp MeSH
- genotyp MeSH
- hepatocyty enzymologie MeSH
- jaterní mikrozomy enzymologie MeSH
- játra enzymologie MeSH
- metabolická aktivace MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- protinádorové látky metabolismus farmakologie MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.
- MeSH
- adukty DNA metabolismus MeSH
- benzopyren metabolismus MeSH
- cytochrom-B(5)-reduktasa metabolismus MeSH
- hepatocyty enzymologie MeSH
- jaterní mikrozomy enzymologie MeSH
- myši knockoutované MeSH
- myši MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Cytochromes P450 (CYPs) are heme enzymes oxygenating a broad range of substrates. Their activity is dependent on the presence of a suitable electron donor (eukaryotic NADPH:CYP oxidoreductase or cytochrome b5). The Escherichia naturally contain no CYPs and no NADPH:CYP oxidoreductase, however it was reported that some CYPs heterologously expressed in E. coli may exist in the ferrous form. A small bacterial flavoprotein, flavodoxin is considered to be responsible for reduction some of these CYPs. METHODS: The reduction state of several human CYPs expressed in the intact living E. coli cells was examined. In addition, molecular dynamics and steered molecular dynamics simulations were performed to predict and compare affinity of flavodoxin toward selected CYPs. RESULTS: We determined the reduction state of five human CYPs heterologously expressed in E. coli. The computationally predicted stabilities of CYP-flavodoxin complexes correlate with the percentage of reduced CYPs in bacterial cells. The mean electron transfer distance within optimized complexes was also related to the percentage of reduced CYPs. CONCLUSION: Depending on the resting state, the CYPs heterologously expressed in E. coli could be divided into two groups; CYP2C8, 2C9, 3A4 are in E. coli present mainly in the oxidized form; while CYP1A1, 1A2, 2A6, 2A13, 2B6, 2D6 are found predominantly in the reduced form. We found a significant correlation between the stability of CYP-flavodoxin complexes and the percentage of reduced CYPs in bacteria. Hence, the naturally expressed flavodoxin is probably responsible for reduction of a larger group of human CYPs in bacterial cells.
- MeSH
- aromatické hydroxylasy metabolismus MeSH
- cytochrom P-450 CYP1A1 metabolismus MeSH
- cytochrom P-450 CYP1A2 metabolismus MeSH
- cytochrom P-450 CYP2D6 metabolismus MeSH
- cytochrom P-450 CYP3A metabolismus MeSH
- cytochrom P450 CYP2A6 metabolismus MeSH
- cytochrom P450 CYP2B6 metabolismus MeSH
- cytochrom P450 CYP2C8 metabolismus MeSH
- cytochrom P450 CYP2C9 metabolismus MeSH
- Escherichia coli MeSH
- flavodoxin metabolismus MeSH
- geneticky modifikované organismy MeSH
- lidé MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- oxidace-redukce MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- železité sloučeniny metabolismus MeSH
- železnaté sloučeniny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In previous studies we had administered benzo[a]pyrene (BaP) to genetically engineered mice (HRN) which do not express NADPH:cytochrome P450 oxidoreductase (POR) in hepatocytes and observed higher DNA adduct levels in livers of these mice than in wild-type mice. To elucidate the reason for this unexpected finding we have used two different settings for in vitro incubations; hepatic microsomes from control and BaP-pretreated HRN mice and reconstituted systems with cytochrome P450 1A1 (CYP1A1), POR, cytochrome b5, and epoxide hydrolase (mEH) in different ratios. In microsomes from BaP-pretreated mice, in which Cyp1a1 was induced, higher levels of BaP metabolites were formed, mainly of BaP-7,8-dihydrodiol. At a low POR:CYP1A1 ratio of 0.05:1 in the reconstituted system, the amounts of BaP diones and BaP-9-ol formed were essentially the same as at an equimolar ratio, but formation of BaP-3-ol was ∼ 1.6-fold higher. Only after addition of mEH were BaP dihydrodiols found. Two BaP-DNA adducts were formed in the presence of mEH, but only one when CYP1A1 and POR were present alone. At a ratio of POR:CYP1A1 of 0.05:1, addition of cytochrome b5 increased CYP1A1-mediated BaP oxidation to most of its metabolites indicating that cytochrome b5 participates in the electron transfer from NADPH to CYP1A1 required for enzyme activity of this CYP. BaP-9-ol was formed even by CYP1A1 reconstituted with cytochrome b5 without POR. Our results suggest that in livers of HRN mice Cyp1a1, cytochrome b5 and mEH can effectively activate BaP to DNA binding species, even in the presence of very low amounts of POR.
- MeSH
- adukty DNA metabolismus MeSH
- benzopyren metabolismus toxicita MeSH
- cytochrom P-450 CYP1A1 metabolismus MeSH
- cytochromy b5 metabolismus MeSH
- epoxid hydrolasy metabolismus MeSH
- geneticky modifikovaná zvířata MeSH
- jaterní mikrozomy účinky léků metabolismus MeSH
- karcinogeny metabolismus toxicita MeSH
- kultivované buňky metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
UNLABELLED: 1. Aristolochic acid I (AAI) is the predominant component in plant extract of Aristolochia genus that is involved in development of aristolochic acid nephropathy, Balkan endemic nephropathy and urothelial cancer. The diseases do not develop in all individuals exposed to AAI and patients exhibit different clinical outcomes. Differences in the activities of enzymes catalyzing the metabolism of AAI might be one of the reasons for this individual susceptibility. 2. Understanding which human enzymes are involved in reductive activation of AAI generating AAI-DNA adducts, and/or its detoxication to the O-demethylated metabolite, aristolochic acid Ia (AAIa), is necessary in the assessment of the susceptibility to this compound. 3. This review summarizes the results of the latest studies utilizing genetically engineered mouse models to identify which human and rodent enzymes catalyze the reductive activation of AAI to AAI-DNA adducts and its oxidative detoxication to AAIa in vivo. 4. The use of hepatic cytochrome P450 (Cyp) reductase null (HRN) mice, in which NADPH:Cyp oxidoreductase (Por) is deleted in hepatocytes, Cyp1a1((-/-)), Cyp1a2((-/-)) single-knockout, Cyp1a1/1a2((-/-)) double-knockout and CYP1A-humanized mice revealed that mouse and human CYP1A1 and 1A2, besides mouse NAD(P)H: quinone oxidoreductase, were involved in the activation of AAI but CYP1A1 and 1A2 also oxidatively detoxified AAI.
- MeSH
- adukty DNA metabolismus MeSH
- cytochrom P-450 CYP1A1 genetika metabolismus MeSH
- cytochrom P-450 CYP1A2 genetika metabolismus MeSH
- enzymy genetika metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- karcinogeny metabolismus farmakokinetika MeSH
- kyseliny aristolochové metabolismus farmakokinetika toxicita MeSH
- lidé MeSH
- metabolická inaktivace * MeSH
- myši knockoutované * MeSH
- myši MeSH
- NAD(P)H dehydrogenasa (chinon) antagonisté a inhibitory MeSH
- NADPH-cytochrom c-reduktasa genetika metabolismus MeSH
- nemoci ledvin chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
OBJECTIVES: 2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. Understanding which enzymes are involved in metabolism of these toxicants is important in the assessment of individual susceptibility. Here, metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes containing cytochromes P450 (CYPs), their reductase (NADPH:CYP reductase), and NADH:cytochrome b5 reductase was investigated under anaerobic and aerobic conditions. In addition, using the same microsomal systems, 2-NBA and 3-NBA were evaluated to be enzymatically activated under anaerobic conditions to species generating 2-NBA- and 3-NBA-derived DNA adducts. METHODS: High performance liquid chromatography (HPLC) with ultraviolet (UV) detection was employed for the separation and characterization of 2-NBA and 3-NBA metabolites formed by hepatic microsomes of rats and mice under the anaerobic and aerobic conditions. Microsomal systems isolated from the liver of the control (untreated) rats and rats pretreated with Sudan I, β-naphthoflavone (β-NF), phenobarbital (PB), ethanol and pregnenolon 16α-carbonitrile (PCN), the inducers of cytochromes P450 (CYP) 1A1, 1A1/2, 2B, 2E1 and 3A, respectively, were used in this study. Microsomes of mouse models, a control mouse line (wild-type, WT) and Hepatic Cytochrome P450 Reductase Null (HRN) mice with deleted gene of NADPH:CYP reductase in the liver, thus absenting this enzyme in their livers, were also employed. To detect and quantify the 2-NBA- and 3-NBA-derived DNA adducts, the 32P postlabeling technique was used. RESULTS: Both reductive metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), found to be formed predominantly under the anaerobic conditions, and two 3-NBA oxidative metabolites, whose structures have not yet been investigated, were formed by several microsomal systems used in the study. Whereas a 3-NBA reductive metabolite, 3-ABA, was found only in the microsomal systems of control rats, the rats treated with β-NF and PB, and microsomes of WT and HRN mice, all hepatic microsomes tested in the study were capable of activating this carcinogen under the reductive conditions to form DNA adducts. A stability of a reactive intermediate of 3-NBA, N-hydroxy-3-aminobenzanthrone that is formed during 3-NBA reduction to 3-ABA, to form nitrenium (and/or carbenium) ions binding to DNA in individual microsomes as well as binding of these ions to proteins of these microsomes, might be the reasons explaining this phenomenon. In contrast to 3-NBA, its isomer 2-NBA was not metabolized by any of the used enzymatic systems both under the anaerobic and aerobic conditions. Likewise, no DNA adducts were detectable after reaction of 2-NBA in these systems with DNA. CONCLUSIONS: The results found in this study, the first report on the metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes demonstrate that 3-NBA, in contrast to 2-NBA, is reductively activated to form 3-NBA-derived DNA adducts by these enzymatic systems. NADPH:CYP reductase can be responsible for formation of these DNA adducts in rat livers, while NADH:cytochrome b5 reductase can contribute to this process in livers of HRN mice.
- MeSH
- adukty DNA metabolismus MeSH
- aerobióza fyziologie MeSH
- anaerobióza fyziologie MeSH
- benz(a)anthraceny farmakokinetika toxicita MeSH
- cytochrom-B(5)-reduktasa genetika metabolismus MeSH
- inbrední kmeny myší MeSH
- jaterní mikrozomy enzymologie MeSH
- karcinogeny farmakokinetika toxicita MeSH
- krysa rodu rattus MeSH
- látky znečišťující vzduch farmakokinetika toxicita MeSH
- metabolická inaktivace fyziologie MeSH
- modely u zvířat MeSH
- myši knockoutované MeSH
- myši MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- potkani Wistar MeSH
- substrátová specifita fyziologie MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- výfukové emise vozidel toxicita MeSH
- zdraví ve městech MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A 96-well microplate-based HPLC endpoint assay is described for the determination of NADPH-cytochrome P450 reductase (CPR) activity. Novel sampling of NADPH into microplates was optimized. Separation was performed on a Zorbax Eclipse XDB-C₁₈ analytical 4.6 × 150 mm, 5 µm column. To validate the method, recombinant human NADPH-P450 reductase and microsomes with cytochrome P450 CYP1A1 were used. The mobile phase consisted of 80% acetonitrile and 20% water at a flow-rate of 0.8 mL/min. The CPR activity was quantified using NADPH fluorescence at λ(Ex) = 340 nm and λ(Em) = 450 nm. Enzymatic activity was directly proportional to the decrease in NADPH fluorescence. This analytical process enables a highly sensitive endpoint determination for reductase activity in vitro and monitoring of the consumption of NADPH in enzymatic reactions. The method avoids the use of substrates and of organic solvents that may affect CPR and cytochrome P450 activity. In the reaction, molecular oxygen served as a proton source. The method can substitute spectrophotometric detection methods for its accuracy, high reproducibility (~100%) and sensitivity. The lower limit of detection, shown using the Agilent 1200 aparatus, is in the 250 nmol range. In addition, using this method it is possible to set up reactions in a high-throughput format.
- MeSH
- acetonitrily chemie MeSH
- fluorescenční spektrometrie metody MeSH
- kalibrace MeSH
- lidé MeSH
- limita detekce MeSH
- lineární modely MeSH
- NADP analýza chemie metabolismus MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- rekombinantní proteiny analýza metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The enzyme NADPH-P450 oxidoreductase (POR) is the main electron donor to all microsomal CYPs. The possible contribution of common POR variants to inter- and intra-individual variability in drug metabolism is of great pharmacogenetic interest. AIM: To search for POR polymorphic alleles and estimate their frequencies in a Jewish population. MATERIALS & METHODS: We analyzed the POR gene in 301 Ashkenazi and Moroccan Jews. RESULTS: A total of 30 POR SNPs were identified, nine in the noncoding regions and 21 in the protein-coding regions (ten synonymous, 11 missense). Six of these missense variants are previously undescribed (S102P, V164M, V191M, D344N, E398A and D648N). CONCLUSION: The data collected in this study on missense POR SNPs, interpreted in light of the crystallographic structure of human POR, indicate that some POR missense variants may be potential biomarkers for future POR pharmacogenetic screening.
- MeSH
- farmakogenetika MeSH
- frekvence genu MeSH
- genetické markery MeSH
- haplotypy MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- missense mutace MeSH
- molekulární modely MeSH
- NADPH-cytochrom c-reduktasa chemie genetika MeSH
- sekvenční analýza DNA MeSH
- vazebná nerovnováha MeSH
- židé genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Izrael MeSH
- Maroko MeSH
Doxorubicin belongs to anthracycline cytotoxic drugs and it is widely used as a major therapeutic agent in the treatment of various types of tumors. However,its therapeutic use is limited by the development of myelosuppression and cardiotoxicity after a specific cumulative dose is reached. The aim of this study was to investigate the effect of flavonoids, either natural or synthetic on doxorubicin-mediated formation of oxidative stress implicated in doxorubicin toxicity. Doxorubicin caused a concentration-dependent increase in the formation of hydroxyl radicals in minipig liver microsomes used as an in-vitro model system. When bacterial membranes heterologously expressing human NADPH cytochrome-P450 oxidoreductase were incubated with doxorubicin, formation of the superoxide radical under aerobic conditions and the doxorubicin–semiquinone radical under anaerobic conditions was detected. Forty different flavonoids were tested for their potency to prevent NADPH-induced or Fe2+-induced peroxidation of lipids in the microsomal system. According to the results, seven flavonoids were selected for evaluation of their potency to inhibit doxorubicin-dependent formation of hydroxyl radicals assessed by electron spin resonance. Myricetin, fisetin, and kaempferol were found to produce a significant protective effect against hydroxyl radicals in the minipig liver microsomal system. In conclusion, this study shows the use of a novel cost-effective in-vitro model system for preselection of antioxidants for testing of their protective effects against toxicity of anthracyclines and potentially other oxidative stress-inducing chemicals.
- MeSH
- benzochinony metabolismus MeSH
- doxorubicin farmakologie toxicita MeSH
- elektronová paramagnetická rezonance MeSH
- flavonoidy farmakologie MeSH
- hydroxylový radikál metabolismus MeSH
- jaterní mikrozomy účinky léků metabolismus MeSH
- lidé MeSH
- modely u zvířat MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- prasata MeSH
- protinádorová antibiotika farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH