Lipid molecules can induce an opening of membrane-facing tunnels in cytochrome P450 1A2
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
U19 CA177547
NCI NIH HHS - United States
PubMed
27722524
PubMed Central
PMC5102803
DOI
10.1039/c6cp03692a
Knihovny.cz E-zdroje
- MeSH
- cytochrom P-450 CYP1A2 chemie MeSH
- fosfatidylcholiny MeSH
- fosfolipidy chemie MeSH
- katalytická doména MeSH
- katalýza MeSH
- lidé MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,2-dilauroylphosphatidylcholine MeSH Prohlížeč
- cytochrom P-450 CYP1A2 MeSH
- fosfatidylcholiny MeSH
- fosfolipidy MeSH
Cytochrome P450 1A2 (P450 1A2, CYP1A2) is a membrane-bound enzyme that oxidizes a broad range of hydrophobic substrates. The structure and dynamics of both the catalytic and trans-membrane (TM) domains of this enzyme in the membrane/water environment were investigated using a multiscale computational approach, including coarse-grained and all-atom molecular dynamics. Starting from the spontaneous self-assembly of the system containing the TM or soluble domain immersed in randomized dilauroyl phosphatidylcholine (DLPC)/water mixture into their respective membrane-bound forms, we reconstituted the membrane-bound structure of the full-length P450 1A2. This structure includes a TM helix that spans the membrane, while being connected to the catalytic domain by a short flexible loop. Furthermore, in this model, the upper part of the TM helix interacts directly with a conserved and highly hydrophobic N-terminal proline-rich segment of the catalytic domain; this segment and the FG loop are immersed in the membrane, whereas the remaining portion of the catalytic domain remains exposed to aqueous solution. The shallow membrane immersion of the catalytic domain induces a depression in the opposite intact layer of the phospholipids. This structural effect may help in stabilizing the position of the TM helix directly beneath the catalytic domain. The partial immersion of the catalytic domain also allows for the enzyme substrates to enter the active site from either aqueous solution or phospholipid environment via several solvent- and membrane-facing tunnels in the full-length P450 1A2. The calculated tunnel dynamics indicated that the opening probability of the membrane-facing tunnels is significantly enhanced when a DLPC molecule spontaneously penetrates into the membrane-facing tunnel 2d. The energetics of the lipid penetration process were assessed by the linear interaction energy (LIE) approximation, and found to be thermodynamically feasible.
Zobrazit více v PubMed
Johnson EF, Stout CD. J Biol Chem. 2013;288:17082–17090. PubMed PMC
Rendic S, Guengerich FP. Chem Res Toxicol. 2015;28:38–42. PubMed PMC
Zhou SF, Wang B, Yang LP, Liu JP. Drug Metab Rev. 2010;42:268–354. PubMed
Rendic S, Guengerich FP. Chem Res Toxicol. 2012;25:1316–1383. PubMed PMC
Kotrbová V, Mrázová B, Moserová M, Martínek V, Hodek P, Hudeček J, Frei E, Stiborová M. Biochem Pharmacol. 2011;82:669–680. PubMed
Stiborová M, Martínek V, Rýdlová H, Hodek P, Frei E. Cancer Res. 2002;62:5678–5684. PubMed
Stiborová M, Martinek V, Frei E, Arlt VM, Schmeiser HH. Curr Drug Metab. 2013;14:695–705. PubMed
Stiborová M, Bárta F, Levová K, Hodek P, Schmeiser HH, Arlt VM, Martínek V. Int J Mol Sci. 2015;16:27561–27575. PubMed PMC
Ripa L, Mee C, Sjö P, Shamovsky I. Chem Res Toxicol. 2014;27:265–278. PubMed
Guengerich FP. J Biochem Mol Toxicol. 2007;21:163–168. PubMed
Laursen T, Jensen K, Møller BL. Biochim Biophys Acta. 2011;1814:132–138. PubMed
Porter TD. J Biochem Mol Toxicol. 2002;16:311–316. PubMed
Jeřábek P, Florián J, Stiborová M, Martínek V. Biochemistry. 2014;53:6695–6705. PubMed
Das A, Sligar SG. Biochemistry. 2009;48:12104–12112. PubMed PMC
Strobel HW, Lu AYH, Heidema J, Coon MJ. J Biol Chem. 1970;245:4851–4854. PubMed
Nath A, Grinkova YV, Sligar SG, Atkins WM. J Biol Chem. 2007;282:28309–28320. PubMed
Ahn T, Yun CH, Oh DB. Biochemistry. 2005;44:9188–9196. PubMed
Sotomayor M, Schulten K. Biophys J. 2004;87:3050–3065. PubMed PMC
Khalili-Araghi F, Tajkhorshid E, Schulten K. Biophys J. 2006;91:L72–74. PubMed PMC
Dror RO, Arlow DH, Borhani DW, Jensen MO, Piana S, Shaw DE. Proc Natl Acad Sci U S A. 2009;106:4689–4694. PubMed PMC
Nury H, Poitevin F, Van Renterghem C, Changeux JP, Corringer PJ, Delarue M, Baaden M. Proc Natl Acad Sci U S A. 2010;107:6275–6280. PubMed PMC
Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE. Science. 2012;336:229–233. PubMed
Periole X, Huber T, Marrink SJ, Sakmar TP. J Am Chem Soc. 2007;129:10126–10132. PubMed
Bond PJ, Parton DL, Clark JF, Sansom MSP. Biophys J. 2008;95:3802–3815. PubMed PMC
Carpenter T, Bond PJ, Khalid S, Sansom MSP. Biophys J. 2008;95:3790–3801. PubMed PMC
Chen CC, Chen CM. J Struct Biol. 2009;165:37–46. PubMed
Tavanti F, Tozzini V. Molecules. 2014;19:14961–14978. PubMed PMC
Wee CL, Gavaghan D, Sansom MSP. Biophys J. 2010;98:1558–1565. PubMed PMC
Stansfeld PJ, Sansom MSP. J Chem Theory Comput. 2011;7:1157–1166. PubMed
Fishelovitch D, Shaik S, Wolfson HJ, Nussinov R. J Phys Chem B. 2009;113:13018–13025. PubMed PMC
Otyepka M, Berka K, Anzenbacher P. Curr Drug Metab. 2012;13:130–142. PubMed
Berka K, Hendrychová T, Anzenbacher P, Otyepka M. J Phys Chem A. 2011;115:11248–11255. PubMed PMC
Cojocaru V, Balali-Mood K, Sansom MSP, Wade RC. PLoS Comput Biol. 2011;7:e1002152. PubMed PMC
Yu X, Cojocaru V, Mustafa G, Salo-Ahen OMH, Lepesheva GI, Wade RC. J Mol Recognit. 2015;28:59–73. PubMed PMC
Lonsdale R, Rouse SL, Sansom MSP, Mulholland AJ. PLoS Comput Biol. 2014;10:e1003714. PubMed PMC
Baylon JL, Lenov IL, Sligar SG, Tajkhorshid E. J Am Chem Soc. 2013;135:8542–8551. PubMed PMC
Jeřábek P, Florián J, Martínek V. Chem Res Toxicol. 2016;29:626–636. PubMed
Gora A, Brezovsky J, Damborsky J. Chem Rev. 2013;113:5871–5923. PubMed PMC
Ludemann SK, Lounnas V, Wade RC. J Mol Biol. 2000;303:797–811. PubMed
Lüdemann SK, Lounnas V, Wade RC. J Mol Biol. 2000;303:813–830. PubMed
Schleinkofer K, Sudarko, Winn PJ, Lüdemann SK, Wade RC. EMBO Rep. 2005;6:584–589. PubMed PMC
Winn PJ, Lüdemann SK, Gauges R, Lounnas V, Wade RC. Proc Natl Acad Sci U S A. 2002;99:5361–5366. PubMed PMC
Yu X, Cojocaru V, Wade RC. Biotechnol Appl Biochem. 2013;60:134–145. PubMed
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. J Phys Chem B. 2007;111:7812–7824. PubMed
Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. J Chem Theory Comput. 2008;4:819–834. PubMed
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. J Comput Chem. 2005;26:1781–1802. PubMed PMC
Bradley R, Radhakrishnan R. Polymers. 2013;5:890–936. PubMed PMC
Vicatos S, Rychkova A, Mukherjee S, Warshel A. Proteins. 2014;82:1168–1185. PubMed PMC
Vorobyov I, Kim I, Chu ZT, Warshel A. Proteins. 2016;84:92–117. PubMed PMC
Lyubartsev AP, Rabinovich AL. Biochim Biophys Acta. 2016;1858:2483–2497. PubMed
Periole X, Cavalli M, Marrink SJ, Ceruso MA. J Chem Theory Comput. 2009;5:2531–2543. PubMed
Darden T, York D, Pedersen L. J Chem Phys. 1993;98:10089–10092.
Ryckaert JP, Ciccotti G, Berendsen HJ. J Comput Phys. 1977;23:327–341.
MacKerell, Bashford D, Bellott, Dunbrack, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M. J Phys Chem B. 1998;102:3586–3616. PubMed
Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW. J Phys Chem B. 2010;114:7830–7843. PubMed PMC
Martínez L, Andrade R, Birgin EG, Martínez JM. J Comput Chem. 2009;30:2157–2164. PubMed
Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF. J Biol Chem. 2007;282:14348–14355. PubMed
Humphrey W, Dalke A, Schulten K. J Mol Graph. 1996;14:33–38. PubMed
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. J Mol Biol. 2001;305:567–580. PubMed
Nugent T, Jones DT. BMC Bioinformatics. 2009;10:159. PubMed PMC
Shih AY, Freddolino PL, Sligar SG, Schulten K. Nano Lett. 2007;7:1692–1696. PubMed
Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P, Biedermannova L, Sochor J, Damborsky J. PLoS Comput Biol. 2012;8:e1002708. PubMed PMC
Cojocaru V, Winn PJ, Wade RC. Biochim Biophys Acta. 2007;1770:390–401. PubMed
Aqvist J, Medina C, Samuelsson JE. Protein Eng. 1994;7:385–391. PubMed
Mobley DL, Guthrie JP. J Comput Aided Mol Des. 2014;28:711–720. PubMed PMC
Hansson T, Marelius J, Aqvist J. J Comput Aided Mol Des. 1998;12:27–35. PubMed
Bren U, Lah J, Bren M, Martínek V, Florián J. J Phys Chem B. 2010;114:2876–2885. PubMed PMC
Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JDA, O’Connell JD, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, Stroud RM. Proc Natl Acad Sci. 2014;111:3865–3870. PubMed PMC
Yamazaki H, Shimada T. Methods Mol Biol Clifton NJ. 2006;320:61–71. PubMed
Indra R, Moserova M, Kroftova N, Sulc M, Martinkova M, Adam V, Eckschlager T, Kizek R, Arlt VM, Stiborova M. Neuro Endocrinol Lett. 2014;35:105–113. PubMed
Copeland RA, Pompliano DL, Meek TD. Nat Rev Drug Discov. 2006;5:730–739. PubMed
Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF. J Biol Chem. 2007;282:14348–14355. PubMed
Cui YL, Xue Q, Zheng QC, Zhang JL, Kong CP, Fan JR, Zhang HX. Biochim Biophys Acta. 2015;1848:2013–2021. PubMed
Li W, Shen J, Liu G, Tang Y, Hoshino T. Proteins. 2011;79:271–281. PubMed
Kingsley LJ, Lill MA. PLOS ONE. 2014;9:e99408. PubMed PMC
Falck JR, Lumin S, Blair I, Dishman E, Martin MV, Waxman DJ, Guengerich FP, Capdevila JH. J Biol Chem. 1990;265:10244–10249. PubMed
Henikoff S, Henikoff JG. Proc Natl Acad Sci U S A. 1992;89:10915–10919. PubMed PMC
Zhao Y, White MA, Muralidhara BK, Sun L, Halpert JR, Stout CD. J Biol Chem. 2006;281:5973–5981. PubMed