Membrane position of ibuprofen agrees with suggested access path entrance to cytochrome P450 2C9 active site
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21744854
PubMed Central
PMC3257864
DOI
10.1021/jp204488j
Knihovny.cz E-zdroje
- MeSH
- aromatické hydroxylasy chemie metabolismus MeSH
- cytochrom P450 CYP2C9 MeSH
- fosfatidylcholiny chemie metabolismus MeSH
- ibuprofen chemie metabolismus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- membrány umělé * MeSH
- molekulární modely MeSH
- povrchové vlastnosti MeSH
- simulace molekulární dynamiky MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2-oleoylphosphatidylcholine MeSH Prohlížeč
- aromatické hydroxylasy MeSH
- CYP2C9 protein, human MeSH Prohlížeč
- cytochrom P450 CYP2C9 MeSH
- fosfatidylcholiny MeSH
- ibuprofen MeSH
- membrány umělé * MeSH
Cytochrome P450 2C9 (CYP2C9) is a membrane-anchored human microsomal protein involved in the drug metabolism in liver. CYP2C9 consists of an N-terminal transmembrane anchor and a catalytic cytoplasmic domain. While the structure of the catalytic domain is well-known from X-ray experiments, the complete structure and its incorporation into the membrane remains unsolved. We constructed an atomistic model of complete CYP2C9 in a dioleoylphosphatidylcholine membrane and evolved it by molecular dynamics simulations in explicit water on a 100+ ns time-scale. The model agrees well with known experimental data about membrane positioning of cytochromes P450. The entry to the substrate access channel is proposed to be facing the membrane interior while the exit of the product egress channel is situated above the interface pointing toward the water phase. The positions of openings of the substrate access and product egress channels correspond to free energy minima of CYP2C9 substrate ibuprofen and its metabolite in the membrane, respectively.
Zobrazit více v PubMed
Ortiz de Montellano P. R.Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed.; Kluwer Academic/Plenum Publishers: New York, 2005.
Anzenbacher P.; Anzenbacherova E. Cell. Mol. Life Sci. 2001, 58 (5–6), 737–47. PubMed PMC
Coon M. J. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 1–25. PubMed
Graham S. E.; Peterson J. A. Arch. Biochem. Biophys. 1999, 369 (1), 24–9. PubMed
Cojocaru V.; Winn P. J.; Wade R. C. Biochim. Biophys. Acta 2007, 1770 (3), 390–401. PubMed
Hendrychova T.; Anzenbacherova E.; Hudecek J.; Skopalik J.; Lange R.; Hildebrandt P.; Otyepka M.; Anzenbacher P. Biochim. Biophys. Acta 2011, 1814 (1), 58–68. PubMed
Otyepka M.; Skopalik J.; Anzenbacherova E.; Anzenbacher P. Biochim. Biophys. Acta 2007, 1770 (3), 376–389. PubMed
Skopalik J.; Anzenbacher P.; Otyepka M. J. Phys. Chem. B 2008, 112 (27), 8165–73. PubMed
Pochapsky T. C.; Kazanis S.; Dang M. Antioxid. Redox Signaling 2010, 13 (8), 1273–96. PubMed PMC
Fishelovitch D.; Hazan C.; Shaik S.; Wolfson H. J.; Nussinov R. J. Am. Chem. Soc. 2007, 129 (6), 1602–11. PubMed
Sakaguchi M.; Mihara K.; Sato R. EMBO J. 1987, 6 (8), 2425–31. PubMed PMC
Black S. D. FASEB J. 1992, 6 (2), 680–5. PubMed
Black S. D.; Martin S. T.; Smith C. A. Biochemistry 1994, 33 (22), 6945–51. PubMed
Szklarz G. D.; Halpert J. R. Life Sci. 1997, 61 (26), 2507–20. PubMed
Cosme J.; Johnson E. F. J. Biol. Chem. 2000, 275 (4), 2545–53. PubMed
Nakayama K.; Puchkaev A.; Pikuleva I. A. J. Biol. Chem. 2001, 276 (33), 31459–65. PubMed
Fernando H.; Halpert J. R.; Davydov D. R. Biochemistry 2006, 45 (13), 4199–209. PubMed PMC
Lepesheva G. I.; Seliskar M.; Knutson C. G.; Stourman N. V.; Rozman D.; Waterman M. R. Arch. Biochem. Biophys. 2007, 464 (2), 221–7. PubMed PMC
Bayburt T. H.; Sligar S. G. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (10), 6725–30. PubMed PMC
Shank-Retzlaff M. L.; Raner G. M.; Coon M. J.; Sligar S. G. Arch. Biochem. Biophys. 1998, 359 (1), 82–8. PubMed
Hudecek J.; Anzenbacher P. Biochim. Biophys. Acta 1988, 955 (3), 361–70. PubMed
Friedman F. K.; Robinson R. C.; Dai R. Front. Biosci. 2004, 9, 2796–806. PubMed
Lomize A. L.; Pogozheva I. D.; Lomize M. A.; Mosberg H. I. Protein Sci. 2006, 15 (6), 1318–33. PubMed PMC
Scott E. E.; He Y. Q.; Halpert J. R. Chem. Res. Toxicol. 2002, 15 (11), 1407–13. PubMed
Williams P. A.; Cosme J.; Sridhar V.; Johnson E. F.; McRee D. E. Mol. Cell 2000, 5 (1), 121–131. PubMed
Conner K. P.; Woods C. M.; Atkins W. M. Arch. Biochem. Biophys. 2011, 507 (1), 56–65. PubMed PMC
Rydberg P.; Rod T. H.; Olsen L.; Ryde U. J. Phys. Chem. B 2007, 111 (19), 5445–5457. PubMed
Evans W. E.; Relling M. V. Science 1999, 286 (5439), 487–91. PubMed
Williams P. A.; Cosme J.; Ward A.; Angove H. C.; Matak Vinkovic D.; Jhoti H. Nature 2003, 424 (6947), 464–8. PubMed
Larkin M. A.; Blackshields G.; Brown N. P.; Chenna R.; McGettigan P. A.; McWilliam H.; Valentin F.; Wallace I. M.; Wilm A.; Lopez R.; Thompson J. D.; Gibson T. J.; Higgins D. G. Bioinformatics 2007, 23 (21), 2947–8. PubMed
Waterhouse A. M.; Procter J. B.; Martin D. M.; Clamp M.; Barton G. J. Bioinformatics 2009, 25 (9), 1189–91. PubMed PMC
von Wachenfeldt C.; Johnson E. F.. Structures of Eukaryotic Cytochrome P450 Enzymes - Membrane Topology. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Plenum Press: New York, 1995; pp 183–223.
DeLano W. L.The PyMOL Molecular Graphics System, 0.99rc6; DeLano Scientific: Palo Alto, CA, 2002.
van Meer G.; Voelker D. R.; Feigenson G. W. Nat. Rev. Mol. Cell Biol. 2008, 9 (2), 112–24. PubMed PMC
Siu S. W.; Vacha R.; Jungwirth P.; Bockmann R. A. J. Chem. Phys. 2008, 128 (12), 125103. PubMed
Oostenbrink C.; Villa A.; Mark A. E.; van Gunsteren W. F. J. Comput. Chem. 2004, 25 (13), 1656–76. PubMed
Berger O.; Edholm O.; Jahnig F. Biophys. J. 1997, 72 (5), 2002–13. PubMed PMC
Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. J. Chem. Theory Comput. 2008, 4 (3), 435–447. PubMed
Petrek M.; Kosinova P.; Koca J.; Otyepka M. Structure 2007, 15 (11), 1357–63. PubMed
Petrek M.; Otyepka M.; Banas P.; Kosinova P.; Koca J.; Damborsky J. BMC Bioinf. 2006, 7, 316. PubMed PMC
Porubsky P. R.; Battaile K. P.; Scott E. E. J. Biol. Chem. 2010, 285 (29), 22282–90. PubMed PMC
Schuttelkopf A. W.; van Aalten D. M. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60 (Pt 8), 1355–63. PubMed
Hub J. S.; de Groot B. L.; van der Spoel D. J. Chem. Theory Comput. 2010, 6 (12), 3713–3720.
Ruan K. H.; So S. P.; Zheng W.; Wu J.; Li D.; Kung J. Biochem. J. 2002, 368 (Pt 3), 721–8. PubMed PMC
Bond P. J.; Wee C. L.; Sansom M. S. Biochemistry 2008, 47 (43), 11321–31. PubMed
Ohta Y.; Kawato S.; Tagashira H.; Takemori S.; Kominami S. Biochemistry 1992, 31 (50), 12680–7. PubMed
Ozalp C.; Szczesna-Skorupa E.; Kemper B. Biochemistry 2006, 45 (14), 4629–37. PubMed
Headlam M. J.; Wilce M. C.; Tuckey R. C. Biochim. Biophys. Acta 2003, 1617 (1–2), 96–108. PubMed
Pikuleva I. A.; Mast N.; Liao W. L.; Turko I. V. Lipids 2008, 43 (12), 1127–32. PubMed PMC
Mast N.; Liao W. L.; Pikuleva I. A.; Turko I. V. Arch. Biochem. Biophys. 2009, 483 (1), 81–9. PubMed PMC
Schoch G. A.; Yano J. K.; Wester M. R.; Griffin K. J.; Stout C. D.; Johnson E. F. J. Biol. Chem. 2004, 279 (10), 9497–9503. PubMed
Hu G.; Johnson E. F.; Kemper B. Drug Metab. Dispos. 2010, 38 (11), 1976–83. PubMed PMC
Szczesna-Skorupa E.; Mallah B.; Kemper B. J. Biol. Chem. 2003, 278 (33), 31269–76. PubMed
Nussio M. R.; Voelcker N. H.; Miners J. O.; Lewis B. C.; Sykes M. J.; Shapter J. G. Chem. Phys. Lipids 2010, 163 (2), 182–9. PubMed
Kida Y.; Ohgiya S.; Mihara K.; Sakaguchi M. Arch. Biochem. Biophys. 1998, 351 (2), 175–9. PubMed
Bridges A.; Gruenke L.; Chang Y. T.; Vakser I. A.; Loew G.; Waskell L. J. Biol. Chem. 1998, 273 (27), 17036–49. PubMed
Wade R. C.; Motiejunas D.; Schleinkofer K.; Sudarko; Winn P. J.; Banerjee A.; Kaniakin A.; Jung C. Biochim. Biophys. Acta 2005, 1754 (1–2), 239–244. PubMed
Williams P. A.; Cosme J.; Sridhar V.; Johnson E. F.; McRee D. E. J. Inorg. Biochem. 2000, 81 (3), 183–90. PubMed
Zhao Y.; White M. A.; Muralidhara B. K.; Sun L.; Halpert J. R.; Stout C. D. J. Biol. Chem. 2006, 281 (9), 5973–81. PubMed
Schleinkofer K.; Sudarko; Winn P. J.; Ludemann S. K.; Wade R. C. EMBO Rep. 2005, 6 (6), 584–589. PubMed PMC
Li W. H.; Shen J.; Liu G. X.; Tang Y.; Hoshino T. Proteins: Struct., Funct., Bioinf. 2011, 79 (1), 271–281. PubMed
Fishelovitch D.; Shaik S.; Wolfson H. J.; Nussinov R. J. Phys. Chem. B 2009, 113 (39), 13018–25. PubMed PMC
Ekroos M.; Sjogren T. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (37), 13682–7. PubMed PMC
Boggara M. B.; Krishnamoorti R. Biophys. J. 2010, 98 (4), 586–95. PubMed PMC
McMullen T. P. W.; Lewis R. N. A. H.; McElhaney R. N. Curr. Opin. Colloid Interface Sci. 2004, 8 (6), 459–468.
Orsi M.; Essex J. W. Soft Matter 2010, 6 (16), 3797–3808.
Watkinson R. M.; Herkenne C.; Guy R. H.; Hadgraft J.; Oliveira G.; Lane M. E. Skin Pharmacol. Physiol. 2009, 22 (1), 15–21. PubMed
Lipid molecules can induce an opening of membrane-facing tunnels in cytochrome P450 1A2
The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function
MOLE 2.0: advanced approach for analysis of biomacromolecular channels
MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels
Convergence of Free Energy Profile of Coumarin in Lipid Bilayer