Membrane position of ibuprofen agrees with suggested access path entrance to cytochrome P450 2C9 active site

. 2011 Oct 20 ; 115 (41) : 11248-55. [epub] 20110711

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21744854

Cytochrome P450 2C9 (CYP2C9) is a membrane-anchored human microsomal protein involved in the drug metabolism in liver. CYP2C9 consists of an N-terminal transmembrane anchor and a catalytic cytoplasmic domain. While the structure of the catalytic domain is well-known from X-ray experiments, the complete structure and its incorporation into the membrane remains unsolved. We constructed an atomistic model of complete CYP2C9 in a dioleoylphosphatidylcholine membrane and evolved it by molecular dynamics simulations in explicit water on a 100+ ns time-scale. The model agrees well with known experimental data about membrane positioning of cytochromes P450. The entry to the substrate access channel is proposed to be facing the membrane interior while the exit of the product egress channel is situated above the interface pointing toward the water phase. The positions of openings of the substrate access and product egress channels correspond to free energy minima of CYP2C9 substrate ibuprofen and its metabolite in the membrane, respectively.

Zobrazit více v PubMed

Ortiz de Montellano P. R.Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed.; Kluwer Academic/Plenum Publishers: New York, 2005.

Anzenbacher P.; Anzenbacherova E. Cell. Mol. Life Sci. 2001, 58 (5–6), 737–47. PubMed PMC

Coon M. J. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 1–25. PubMed

Graham S. E.; Peterson J. A. Arch. Biochem. Biophys. 1999, 369 (1), 24–9. PubMed

Cojocaru V.; Winn P. J.; Wade R. C. Biochim. Biophys. Acta 2007, 1770 (3), 390–401. PubMed

Hendrychova T.; Anzenbacherova E.; Hudecek J.; Skopalik J.; Lange R.; Hildebrandt P.; Otyepka M.; Anzenbacher P. Biochim. Biophys. Acta 2011, 1814 (1), 58–68. PubMed

Otyepka M.; Skopalik J.; Anzenbacherova E.; Anzenbacher P. Biochim. Biophys. Acta 2007, 1770 (3), 376–389. PubMed

Skopalik J.; Anzenbacher P.; Otyepka M. J. Phys. Chem. B 2008, 112 (27), 8165–73. PubMed

Pochapsky T. C.; Kazanis S.; Dang M. Antioxid. Redox Signaling 2010, 13 (8), 1273–96. PubMed PMC

Fishelovitch D.; Hazan C.; Shaik S.; Wolfson H. J.; Nussinov R. J. Am. Chem. Soc. 2007, 129 (6), 1602–11. PubMed

Sakaguchi M.; Mihara K.; Sato R. EMBO J. 1987, 6 (8), 2425–31. PubMed PMC

Black S. D. FASEB J. 1992, 6 (2), 680–5. PubMed

Black S. D.; Martin S. T.; Smith C. A. Biochemistry 1994, 33 (22), 6945–51. PubMed

Szklarz G. D.; Halpert J. R. Life Sci. 1997, 61 (26), 2507–20. PubMed

Cosme J.; Johnson E. F. J. Biol. Chem. 2000, 275 (4), 2545–53. PubMed

Nakayama K.; Puchkaev A.; Pikuleva I. A. J. Biol. Chem. 2001, 276 (33), 31459–65. PubMed

Fernando H.; Halpert J. R.; Davydov D. R. Biochemistry 2006, 45 (13), 4199–209. PubMed PMC

Lepesheva G. I.; Seliskar M.; Knutson C. G.; Stourman N. V.; Rozman D.; Waterman M. R. Arch. Biochem. Biophys. 2007, 464 (2), 221–7. PubMed PMC

Bayburt T. H.; Sligar S. G. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (10), 6725–30. PubMed PMC

Shank-Retzlaff M. L.; Raner G. M.; Coon M. J.; Sligar S. G. Arch. Biochem. Biophys. 1998, 359 (1), 82–8. PubMed

Hudecek J.; Anzenbacher P. Biochim. Biophys. Acta 1988, 955 (3), 361–70. PubMed

Friedman F. K.; Robinson R. C.; Dai R. Front. Biosci. 2004, 9, 2796–806. PubMed

Lomize A. L.; Pogozheva I. D.; Lomize M. A.; Mosberg H. I. Protein Sci. 2006, 15 (6), 1318–33. PubMed PMC

Scott E. E.; He Y. Q.; Halpert J. R. Chem. Res. Toxicol. 2002, 15 (11), 1407–13. PubMed

Williams P. A.; Cosme J.; Sridhar V.; Johnson E. F.; McRee D. E. Mol. Cell 2000, 5 (1), 121–131. PubMed

Conner K. P.; Woods C. M.; Atkins W. M. Arch. Biochem. Biophys. 2011, 507 (1), 56–65. PubMed PMC

Rydberg P.; Rod T. H.; Olsen L.; Ryde U. J. Phys. Chem. B 2007, 111 (19), 5445–5457. PubMed

Evans W. E.; Relling M. V. Science 1999, 286 (5439), 487–91. PubMed

Williams P. A.; Cosme J.; Ward A.; Angove H. C.; Matak Vinkovic D.; Jhoti H. Nature 2003, 424 (6947), 464–8. PubMed

Larkin M. A.; Blackshields G.; Brown N. P.; Chenna R.; McGettigan P. A.; McWilliam H.; Valentin F.; Wallace I. M.; Wilm A.; Lopez R.; Thompson J. D.; Gibson T. J.; Higgins D. G. Bioinformatics 2007, 23 (21), 2947–8. PubMed

Waterhouse A. M.; Procter J. B.; Martin D. M.; Clamp M.; Barton G. J. Bioinformatics 2009, 25 (9), 1189–91. PubMed PMC

von Wachenfeldt C.; Johnson E. F.. Structures of Eukaryotic Cytochrome P450 Enzymes - Membrane Topology. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Plenum Press: New York, 1995; pp 183–223.

DeLano W. L.The PyMOL Molecular Graphics System, 0.99rc6; DeLano Scientific: Palo Alto, CA, 2002.

van Meer G.; Voelker D. R.; Feigenson G. W. Nat. Rev. Mol. Cell Biol. 2008, 9 (2), 112–24. PubMed PMC

Siu S. W.; Vacha R.; Jungwirth P.; Bockmann R. A. J. Chem. Phys. 2008, 128 (12), 125103. PubMed

Oostenbrink C.; Villa A.; Mark A. E.; van Gunsteren W. F. J. Comput. Chem. 2004, 25 (13), 1656–76. PubMed

Berger O.; Edholm O.; Jahnig F. Biophys. J. 1997, 72 (5), 2002–13. PubMed PMC

Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. J. Chem. Theory Comput. 2008, 4 (3), 435–447. PubMed

Petrek M.; Kosinova P.; Koca J.; Otyepka M. Structure 2007, 15 (11), 1357–63. PubMed

Petrek M.; Otyepka M.; Banas P.; Kosinova P.; Koca J.; Damborsky J. BMC Bioinf. 2006, 7, 316. PubMed PMC

Porubsky P. R.; Battaile K. P.; Scott E. E. J. Biol. Chem. 2010, 285 (29), 22282–90. PubMed PMC

Schuttelkopf A. W.; van Aalten D. M. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60 (Pt 8), 1355–63. PubMed

Hub J. S.; de Groot B. L.; van der Spoel D. J. Chem. Theory Comput. 2010, 6 (12), 3713–3720.

Ruan K. H.; So S. P.; Zheng W.; Wu J.; Li D.; Kung J. Biochem. J. 2002, 368 (Pt 3), 721–8. PubMed PMC

Bond P. J.; Wee C. L.; Sansom M. S. Biochemistry 2008, 47 (43), 11321–31. PubMed

Ohta Y.; Kawato S.; Tagashira H.; Takemori S.; Kominami S. Biochemistry 1992, 31 (50), 12680–7. PubMed

Ozalp C.; Szczesna-Skorupa E.; Kemper B. Biochemistry 2006, 45 (14), 4629–37. PubMed

Headlam M. J.; Wilce M. C.; Tuckey R. C. Biochim. Biophys. Acta 2003, 1617 (1–2), 96–108. PubMed

Pikuleva I. A.; Mast N.; Liao W. L.; Turko I. V. Lipids 2008, 43 (12), 1127–32. PubMed PMC

Mast N.; Liao W. L.; Pikuleva I. A.; Turko I. V. Arch. Biochem. Biophys. 2009, 483 (1), 81–9. PubMed PMC

Schoch G. A.; Yano J. K.; Wester M. R.; Griffin K. J.; Stout C. D.; Johnson E. F. J. Biol. Chem. 2004, 279 (10), 9497–9503. PubMed

Hu G.; Johnson E. F.; Kemper B. Drug Metab. Dispos. 2010, 38 (11), 1976–83. PubMed PMC

Szczesna-Skorupa E.; Mallah B.; Kemper B. J. Biol. Chem. 2003, 278 (33), 31269–76. PubMed

Nussio M. R.; Voelcker N. H.; Miners J. O.; Lewis B. C.; Sykes M. J.; Shapter J. G. Chem. Phys. Lipids 2010, 163 (2), 182–9. PubMed

Kida Y.; Ohgiya S.; Mihara K.; Sakaguchi M. Arch. Biochem. Biophys. 1998, 351 (2), 175–9. PubMed

Bridges A.; Gruenke L.; Chang Y. T.; Vakser I. A.; Loew G.; Waskell L. J. Biol. Chem. 1998, 273 (27), 17036–49. PubMed

Wade R. C.; Motiejunas D.; Schleinkofer K.; Sudarko; Winn P. J.; Banerjee A.; Kaniakin A.; Jung C. Biochim. Biophys. Acta 2005, 1754 (1–2), 239–244. PubMed

Williams P. A.; Cosme J.; Sridhar V.; Johnson E. F.; McRee D. E. J. Inorg. Biochem. 2000, 81 (3), 183–90. PubMed

Zhao Y.; White M. A.; Muralidhara B. K.; Sun L.; Halpert J. R.; Stout C. D. J. Biol. Chem. 2006, 281 (9), 5973–81. PubMed

Schleinkofer K.; Sudarko; Winn P. J.; Ludemann S. K.; Wade R. C. EMBO Rep. 2005, 6 (6), 584–589. PubMed PMC

Li W. H.; Shen J.; Liu G. X.; Tang Y.; Hoshino T. Proteins: Struct., Funct., Bioinf. 2011, 79 (1), 271–281. PubMed

Fishelovitch D.; Shaik S.; Wolfson H. J.; Nussinov R. J. Phys. Chem. B 2009, 113 (39), 13018–25. PubMed PMC

Ekroos M.; Sjogren T. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (37), 13682–7. PubMed PMC

Boggara M. B.; Krishnamoorti R. Biophys. J. 2010, 98 (4), 586–95. PubMed PMC

McMullen T. P. W.; Lewis R. N. A. H.; McElhaney R. N. Curr. Opin. Colloid Interface Sci. 2004, 8 (6), 459–468.

Orsi M.; Essex J. W. Soft Matter 2010, 6 (16), 3797–3808.

Watkinson R. M.; Herkenne C.; Guy R. H.; Hadgraft J.; Oliveira G.; Lane M. E. Skin Pharmacol. Physiol. 2009, 22 (1), 15–21. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lipid molecules can induce an opening of membrane-facing tunnels in cytochrome P450 1A2

. 2016 Nov 09 ; 18 (44) : 30344-30356.

NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene

. 2016 Aug 15 ; 29 (8) : 1325-34. [epub] 20160720

The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function

. 2016 Apr ; 44 (4) : 576-90. [epub] 20160205

NADPH- and NADH-dependent metabolism of and DNA adduct formation by benzo[a]pyrene catalyzed with rat hepatic microsomes and cytochrome P450 1A1

. 2016 ; 147 () : 847-855. [epub] 20160309

MOLE 2.0: advanced approach for analysis of biomacromolecular channels

. 2013 Aug 16 ; 5 (1) : 39. [epub] 20130816

MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels

. 2012 Jul ; 40 (Web Server issue) : W222-7. [epub] 20120502

Convergence of Free Energy Profile of Coumarin in Lipid Bilayer

. 2012 Apr 10 ; 8 (4) : 1200-1211. [epub] 20120224

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...