MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22553366
PubMed Central
PMC3394309
DOI
10.1093/nar/gks363
PII: gks363
Knihovny.cz E-zdroje
- MeSH
- cytochrom P-450 CYP3A chemie MeSH
- enzymy chemie MeSH
- internet MeSH
- iontové kanály chemie MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- počítačová grafika MeSH
- ribozomy chemie MeSH
- software * MeSH
- uživatelské rozhraní počítače MeSH
- velké podjednotky ribozomu archebakteriální chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytochrom P-450 CYP3A MeSH
- enzymy MeSH
- iontové kanály MeSH
Biomolecular channels play important roles in many biological systems, e.g. enzymes, ribosomes and ion channels. This article introduces a web-based interactive MOLEonline 2.0 application for the analysis of access/egress paths to interior molecular voids. MOLEonline 2.0 enables platform-independent, easy-to-use and interactive analyses of (bio)macromolecular channels, tunnels and pores. Results are presented in a clear manner, making their interpretation easy. For each channel, MOLEonline displays a 3D graphical representation of the channel, its profile accompanied by a list of lining residues and also its basic physicochemical properties. The users can tune advanced parameters when performing a channel search to direct the search according to their needs. The MOLEonline 2.0 application is freely available via the Internet at http://ncbr.muni.cz/mole or http://mole.upol.cz.
Zobrazit více v PubMed
Walz T, Smith BL, Agre P, Engel A. The 3-dimensional structure of human erythrocyte aquaporin chip. EMBO J. 1994;13:2985–2993. PubMed PMC
Engel A, Fijiyoshi Y, Agre P. The importance of aquaporin water channel protein structures. EMBO J. 2000;19:800–806. PubMed PMC
Jiang YX, Lee A, Chen JY, Cadene M, Chait BT, MacKinnon R. Crystal structure and mechanism of a calcium-gated potassium channel. Nature. 2002;417:515–522. PubMed
Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280:69–77. PubMed
Gouaux E, MacKinnon R. Principles of selective ion transport in channels and pumps. Science. 2005;310:1461–1465. PubMed
MacKinnon R. Potassium channels. FEBS Lett. 2003;555:62–65. PubMed
Murray JW, Barber J. Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J. Struct. Biol. 2007;159:228–237. PubMed
Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 2009;16:334–342. PubMed
Voss NR, Gerstein M, Steitz TA, Moore PB. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 2006;360:893–906. PubMed
Wade RC, Winn PJ, Schlichting E, Sudarko A survey of active site access channels in cytochromes P450. J. Inorg. Biochem. 2004;98:1175–1182. PubMed
Otyepka M, Skopalik J, Anzenbacherova E, Anzenbacher P. What common structural features and variations of mammalian P450s are known to date? Biochim. Biophys. Acta. 2007;1770:376–389. PubMed
Otyepka M, Berka K, Anzenbacher P. Is there a relationship between the substrate preferences and structural flexibility of cytochromes P450? Curr. Drug Metab. 2012;13:130–142. PubMed
Berka K, Hendrychova T, Anzenbacher P, Otyepka M. Membrane position of ibuprofen agrees with suggested access path entrance to cytochrome P450 2C9 active site. J. Phys. Chem. A. 2011;115:11248–11255. PubMed PMC
Hendrychova T, Berka K, Navratilova V, Anzenbacher P, Otyepka M. Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations. Curr. Drug Metab. 2012;13:177–189. PubMed
Cojocaru V, Winn PJ, Wade RC. The ins and outs of cytochrome P450s. Biochim. Biophys. Acta. 2007;1770:390–401. PubMed
Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics. 2006;7:316. PubMed PMC
Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, Wade RC, Tsuda M, Nagata Y, Damborsky J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 2009;5:727–733. PubMed
Liang J, Edelsbrunner H, Woodward C. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 1998;7:1884–1897. PubMed PMC
Damborsky J, Petrek M, Banas P, Otyepka M. Identification of tunnels in proteins, nucleic acids, inorganic materials and molecular ensembles. Biotechnol. J. 2007;2:62–67. PubMed
Perot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov. Today. 2010;15:656–667. PubMed
Coleman RG, Sharp KA. Finding and characterizing tunnels in macromolecules with application to ion channels and pores. Biophys. J. 2009;96:632–645. PubMed PMC
Ho BK, Gruswitz F. HOLLOW: Generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 2008;8:49. PubMed PMC
Voss NR, Gerstein M. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res. 2010;38:W555–W562. PubMed PMC
Raunest M, Kandt C. dxTuber: Detecting protein cavities, tunnels and clefts based on protein and solvent dynamics. J. Mol. Graphics Model. 2011;29:895–905. PubMed
Laskowski RA. Surfnet - a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graphics. 1995;13:323–330. PubMed
Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP. HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graphics Model. 1996;14:354–360. PubMed
Pellegrini-Calace M, Maiwald T, Thornton JM. PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure. PLoS Comp. Biol. 2009;5:e1000440. PubMed PMC
Petrek M, Kosinova P, Koca J, Otyepka M. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure. 2007;15:1357–1363. PubMed
Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R. MolAxis: efficient and accurate identification of channels in macromolecules. Proteins. 2008;73:72–86. PubMed PMC
Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R. MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Res. 2008;36:W210–W215. PubMed PMC
Lee PH, Helms V. Identifying continuous pores in protein structures with PROPORES by computational repositioning of gating residues. Proteins. 2012;80:421–432. PubMed
Dijkstra EW. A note on two problems in connexion with graphs. Numerische Mathematik. 1959;1:269–271.
Richards FM. The interpretation of protein structures: total volume, group volume distributions and packing density. J. Mol. Biol. 1974;82:1–14. PubMed
Poupon A. Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Curr. Opin. Struct. Biol. 2004;14:233–241. PubMed
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000;28:235–242. PubMed PMC
Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem. Mol. Biol. Educ. 2006;34:255–261. PubMed
Porter CT, Bartlett GJ, Thornton JM. The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 2004;32:D129–D133. PubMed PMC
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A 2nd generation force-field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995;117:5179–5197.
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. PubMed
Cid H, Bunster M, Canales M, Gazitua F. Hydrophobicity and structural classes in proteins. Protein Eng. 1992;5:373–375. PubMed
Zimmerman JM, Eliezer N, Simha R. Characterization of amino acid sequences in proteins by statistical methods. J. Theor. Biol. 1968;21:170–201. PubMed
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 1992;8:275–282. PubMed
Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010;38:W529–W533. PubMed PMC
Pavelka A, Chovancova E, Damborsky J. HotSpot wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res. 2009;37:W376–W383. PubMed PMC
Anzenbacher P, Anzenbacherova E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. 2001;58:737–747. PubMed PMC
Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: Structure, Mechanism, and Biochemistry. 3rd edn. New York: Kluwer Academic/Plenum Publishers; 2005. pp. 377–530.
Anzenbacher P, Anzenbacherová E, Lange R, Skopalík J, Otyepka M. Active sites of cytochromes P450: what are they like? Acta Chim. Slov. 2008;55:63–66.
Skopalik J, Anzenbacher P, Otyepka M. Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J. Phys. Chem. B. 2008;112:8165–8173. PubMed
Fishelovitch D, Shaik S, Wolfson HJ, Nussinov R. Theoretical characterization of substrate access/exit channels in the human cytochrome P450 3A4 enzyme: involvement of phenylalanine residues in the gating mechanism. J. Phys. Chem. B. 2009;113:13018–13025. PubMed PMC
Conner KP, Woods CM, Atkins WM. Interactions of cytochrome P450s with their ligands. Arch. Biochem. Biophys. 2011;507:56–65. PubMed PMC
ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era
MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update)
ChannelsDB: database of biomacromolecular tunnels and pores
The Eighth Central European Conference "Chemistry towards Biology": Snapshot
MOLE 2.0: advanced approach for analysis of biomacromolecular channels