The Eighth Central European Conference "Chemistry towards Biology": Snapshot
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kongresy
Grantová podpora
P 25971
Austrian Science Fund FWF - Austria
PubMed
27763518
PubMed Central
PMC5283649
DOI
10.3390/molecules21101381
PII: molecules21101381
Knihovny.cz E-zdroje
- Klíčová slova
- ADME, drug delivery systems, biological chemistry, biomaterials, chemical biology, drug design, nanoparticles, natural compounds, proteins and nucleic acids, synthesis, targeting,
- MeSH
- chemie farmaceutická metody MeSH
- epigeneze genetická MeSH
- proteiny chemie MeSH
- racionální návrh léčiv MeSH
- systémová biologie MeSH
- systémy cílené aplikace léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- kongresy MeSH
- Názvy látek
- proteiny MeSH
The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.
Biotechnology Department Teagasc Moorepark Food Research Centre Fermoy P61 C996 Co Cork Ireland
Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czech Republic
Department of Biological Sciences Cork Institute of Technology Bishopstown T12 P928 Cork Ireland
Department of Pharmacy College of Pharmacy Seoul National University 1 Gwanak ro 08826 Seoul Korea
Institute of Chemistry University of Silesia Szkolna 9 40007 Katowice Poland
Zobrazit více v PubMed
The 8th Central European Conference “Chemistry towards Biology”. [(accessed on 15 October 2016)]. Available online: http://sites.google.com/site/ctb2016brno.
Dunker A.K., Lawson J.D., Brown C.J., Williams R.M., Romero P., Oh J.S., Oldfield C.J., Campen A.M., Ratliff C.M., Hipps K.W., et al. Intrinsically disordered protein. J. Mol. Graph. Model. 2001;19:26–59. doi: 10.1016/S1093-3263(00)00138-8. PubMed DOI
Dunker A.K., Obradovic Z., Romero P., Garner E.C., Brown C.J. Intrinsic protein disorder in complete genomes. Gen. Inform. Ser. Workshop Gen. Inform. 2000;11:161–171. PubMed
Motáčková V., Nováček J., Zawadzka-Kazimierczuk A., Kazimierczuk K., Žídek L., Šanderová H., Krásný L., Kożmiński W., Sklenář V. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J. Biomol. NMR. 2010;48:169–177. PubMed PMC
Nováček J., Zawadska-Kazimierczuk A., Motáčková V., Žídek L., Kożmiński W., Sklenář V. 5D 13C-detected NMR experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J. Biomol. NMR. 2011;50:1–11. doi: 10.1007/s10858-011-9496-2. PubMed DOI
Motáčková V., Kadeřávek P., Rabatinová A., Šanderová H., Nováček J., Otrusinová O., Krásný L., Sklenář V., Žídek L. Structural study of the partially disordered full-length δ subunit of RNA polymerasefrom Bacillus subtilis. ChemBioChem. 2013;14:1772–1779. PubMed
Nováček J., Haba N.Y., Chill J.H., Žídek L., Sklenář V. 4D non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCACON experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins. J. Biomol. NMR. 2012;53:139–148. doi: 10.1007/s10858-012-9631-8. PubMed DOI
Nováček J., Janda L., Dopitová R., Žídek L., Sklenář V. Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: Transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J. Biomol. NMR. 2013;56:291–301. doi: 10.1007/s10858-013-9761-7. PubMed DOI
Kadeřávek P., Zapletal V., Rabatinová A., Krásný L., Sklenář V., Žídek L. Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J. Biomol. NMR. 2014;58:193–207. doi: 10.1007/s10858-014-9816-4. PubMed DOI
Kadeřávek P., Zapletal V., Fiala R., Srb P., Padrta P., Přecechtělová J., Šoltésová M., Kowalewski J., Wildmalm G., Chmelík J., Jr., et al. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies. J. Magn. Reson. 2016;266:23–40. doi: 10.1016/j.jmr.2016.02.016. PubMed DOI
Nováček J., Žídek L., Sklenář V. Toward optimal-resolution NMR of intrinsically disordered proteins. J. Magn. Reson. 2014;241:41–52. doi: 10.1016/j.jmr.2013.12.008. PubMed DOI
Carulla N., Zhou M., Giralt E., Robinson C.V., Dobson C.M. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Acc. Chem. Res. 2010;43:1072–1079. doi: 10.1021/ar9002784. PubMed DOI
Perczel A., Hudáky P., Pálfi V.K. Dead-end street of protein folding: Thermodynamic rationale of amyloid fibril formation. J. Am. Chem. Soc. 2007;129:14959–14965. doi: 10.1021/ja0747122. PubMed DOI
Neidigh J.W., Fesinmeyer R.M., Andersen N.H. Designing a 20-residue protein. Nat. Struct. Biol. 2002;9:425–430. doi: 10.1038/nsb798. PubMed DOI
Perczel A., Hollosi M., Tusnady G., Fasman G.D. Convex constraint analysis—A natural deconvolution of circular-dichroism curves of proteins. Protein Eng. 1991;4:669–679. doi: 10.1093/protein/4.6.669. PubMed DOI
Perczel A., Park K., Fasman G.D. Analysis of the circular-dichroism spectrum of proteins using the convex constraint algorithm - a practical guide. Anal. Biochem. 1992;203:83–93. doi: 10.1016/0003-2697(92)90046-A. PubMed DOI
Farkas V., Jákli I., Tóth G.K., Perczel A. Aromatic cluster sensor of protein folding: Near-UV electronic circular dichroism bands assigned to fold compactness. Chem. Eur. J. 2016 doi: 10.1002/chem.201602455. PubMed DOI
Rovó P., Stráner P., Láng A., Bartha I., Huszár K., Nyitray L., Perczel A. Structural insights into the Trp-Cage folding intermediate formation. Chemistry. 2013;19:2628–2640. doi: 10.1002/chem.201203764. PubMed DOI
Kardos J., Kiss B., Micsonai A., Rovó P., Menyhárd K.D., Kovács J., Tóth K.G., Perczel A. Phosphorylation as conformational switch from the native to amyloid state: Trp-Cage as a protein aggregation model. J. Phys. Chem. B. 2015;119:2946–2955. doi: 10.1021/jp5124234. PubMed DOI
Doolittle R.F., Fasman G.D. Redundancies in protein sequences. In: Fasman G.D., editor. Prediction of Protein Structure and the Principles of Protein Conformation. Plenum Press; New York, NY, USA: 1989. pp. 599–624.
Perutz M.F., Windle A.H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature. 2001;412:143–144. doi: 10.1038/35084141. PubMed DOI
Ross C.A., Margolis R.L., Becher M.W., Wood J.D., Engelender S., Cooper J.K., Sharp A.H. In: Neuronal Degeneration and Regeneration: From Basic Mechanisms to Prospects for Therapy. Van Leeuwen F.W., Salehi A., Giger R.J., Holtmaat A.J.G.D., Verhaagen J., editors. Elsevier; Amsterdam, The Netherlands: 1998. pp. 397–419.
Salichs E., Ledda A., Mularoni L., Alba M.M., de la Luna S. Genome-wide analysis of histidine repeats reveals their role in the localization of human proteins to the nuclear speckles compartment. PLoS Genet. 2009;5:e1000397. doi: 10.1371/journal.pgen.1000397. PubMed DOI PMC
Cheng T., Xia W., Wang P., Huang F., Wang J., Sun H. Histidine-rich proteins in prokaryotes: Metal homeostasis and environmental habitat-related occurrence. Metallomics. 2013;5:1423–1429. doi: 10.1039/c3mt00059a. PubMed DOI
Gaberc-Porekar V., Menartr V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods. 2001;49:335–360. doi: 10.1016/S0165-022X(01)00207-X. PubMed DOI
Watly J., Simonoysky E., Wieczorek R., Barbosa N., Miller Y., Kozlowski H. Insight into the coordination and the binding sites of Cu2+ by the histidyl-6-tag using experimental and computational tools. Inorg. Chem. 2014;53:6675–6683. doi: 10.1021/ic500387u. PubMed DOI
Watly J., Simonovsky E., Barbosa N., Spodzieja M., Wieczorek R., Rodziewicz-Motowidlo S., Miller Y., Kozlowski H. African viper poly-his tag peptide fragment efficiently binds metal ions and is folded into an α-helical structure. Inorg. Chem. 2015;54:7692–7702. doi: 10.1021/acs.inorgchem.5b01029. PubMed DOI
Brasili D., Watly J., Simonovsky E., Guerrini R., Barbosa N.A., Wieczorek R., Remelli M., Kozlowski H., Miller Y. The unusual metal ion binding ability of histidyl tags and their mutated derivatives. Dalton Trans. 2016;45:5629–5639. doi: 10.1039/C5DT04747A. PubMed DOI
Favreau P., Cheneval O., Menin L., Michalet S., Gaertner H., Principaud F., Thai R., Ménez A., Bulet P., Stöcklin R. The venom of the snake genus Atheris contains a new class of peptides with clusters of histidine and glycine residues. Rapid Commun. Mass Spectrom. 2007;21:406–412. doi: 10.1002/rcm.2853. PubMed DOI
Wagstaff S.C., Favreau P., Cheneval O., Laing G.D., Wilkinson M.C., Miller R.L., Stocklin R., Harrison R.A. Molecular characterisation of endogenous snake venom metalloproteinase inhibitors. Biochem. Biophys. Res. Commun. 2008;365:650–656. doi: 10.1016/j.bbrc.2007.11.027. PubMed DOI
Chaturvedi K.S., Henderson J.P. Pathogenic adaptations to host-derived antibacterial copper. Front. Cell. Infect. Microbiol. 2014;4:3. doi: 10.3389/fcimb.2014.00003. PubMed DOI PMC
Kozlowski H., Potocki S., Remelli M., Rowinska-Zyrek M., Valensin D. Specific metal ion binding sites in unstructured regions of proteins. Coord. Chem. Rev. 2013;257:2625–2638. doi: 10.1016/j.ccr.2013.01.024. DOI
Krzywoszynska K., Rowinska-Zyrek M., Witkowska D., Potocki S., Luczkowski M., Kozlowski H. Polythiol binding to biologically relevant metal ions. Dalton Trans. 2011;40:10434–10439. doi: 10.1039/c1dt10562k. PubMed DOI
Kolkowska P., Krzywoszynska K., Potocki S., Chetana P.R., Spodzieja M., Rodziewicz-Motowidlo S., Kozlowski H. Specificity of the Zn2+, Cd2+ and Ni2+ ion binding sites in the loop domain of the HypA protein. Dalton Trans. 2015;44:9887–9900. doi: 10.1039/C5DT01005E. PubMed DOI
Bourne P.E., Gu J. Structural Bioinformatics. 2nd ed. John Wiley & Sons; New York, NY, USA: 2009.
Bourne P.E., Weissig H. Structural Bioinformatics. Wiley; New York, NY, USA: 2003.
Sehnal D., Pravda L., Svobodová-Vařeková R., Ionescu C.M., Koča J. PatternQuery: Web application for fast detection of biomacromolecular fragments in entire Protein Data Bank. Nucleic Acids Res. 2015;43:W383–W388. doi: 10.1093/nar/gkv561. PubMed DOI PMC
Sehnal D., Svobodová-Vařeková R., Huber H.J., Geidl S., Ionescu C.M., Wimmerová M., Koča J. SiteBinder: An improved approach for comparing multiple protein structural motifs. J. Chem. Inf. Model. 2012;52:343–359. doi: 10.1021/ci200444d. PubMed DOI
Svobodová-Vařeková R., Jaiswal D., Sehnal D., Ionescu C.M., Geidl S., Pravda L., Horský V., Wimmerová M., Koča J. MotiveValidator: Interactive web-based validation of ligand and residue structure in biomolecular complexes. Nucleic Acids Res. 2014;42:W227–W233. PubMed PMC
Sehnal D., Svobodová-Vařeková R., Pravda L., Ionescu C.M., Geidl S., Horský V., Jaiswal D., Wimmerová M., Koča J. ValidatorDB—Database of up-to-date and comprehensive validation results for ligands and non-standard residues from the Protein Data Bank. Nucleic Acids Res. 2014;43:D369–D375. doi: 10.1093/nar/gku1118. PubMed DOI PMC
Ionescu C.M., Sehnal D., Falginella F.L., Pant P., Pravda L., Bouchal T., Svobodová-Vařeková R., Geidl S., Koča J. AtomicChargeCalculator: Interactive web-based calculation of atomic charges in large biomolecular complexes and drug like molecules. J. Chemoinform. 2015;7:50–62. doi: 10.1186/s13321-015-0099-x. PubMed DOI PMC
Berka K., Hanák O., Sehnal D., Banáš P., Navrátilová V., Jaiswal D., Ionescu C.M., Svobodová-Vařeková R., Koča J., Otyepka M. MOLEonline 2.0: Interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res. 2012;40:W222–W227. doi: 10.1093/nar/gks363. PubMed DOI PMC
Sehnal D., Svobodová-Vařeková R., Berka K., Pravda L., Navrátilová V., Banáš P., Ionescu C.M., Otyepka M., Koča J. MOLE 2.0: Advanced approach for analysis of biomacromolecular channels. J. Cheminform. 2013;5:39. doi: 10.1186/1758-2946-5-39. PubMed DOI PMC
WebChemistry Services and Apps, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/WebChemistry.
PatternQuery, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/PatternQuery.
SiteBinder, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/SiteBinder.
Wang X., Snoeyink J. Defining and computing optimum RMSD for gapped and weighted multiplestructure alignment. IEEE/ACM Trans Comput. Biol. Bioinform. 2008;5:525–533. doi: 10.1109/TCBB.2008.92. PubMed DOI
MotiveValidator, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/MotiveValidator.
Validator, D.B. Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/ValidatorDB.
AtomicChargeCalculator, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/ACC.
Protein Data Bank in Europe: Bringing Structure to Biology. [(accessed on 15 October 2016)]. Available online: http://www.ebi.ac.uk/pdbe/coordinates.
Andujar S., Suvire F., Angelina E., Peruchena N., Cabedo N., Cortes D., Enriz R. Searching the “biologically relevant” conformation of dopamine. A Computational approach”. J. Chem. Inf. Model. 2012;52:99–112. doi: 10.1021/ci2004225. PubMed DOI
Parraga J., Andujar A., Rojas S., Gutierrez L., El Aquad N., Sanz M., Enriz R., Cabedo N., Cortes D. Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D2-like selective ligands. Eur. J. Med. Chem. 2016;122:27–42. doi: 10.1016/j.ejmech.2016.06.009. PubMed DOI
Vega-Hissi E., Tosso R., Enriz R., Lucas Gutierrez J. Molecular Insight into the Interaction Mechanisms of Amino-2H-Imidazole Derivatives with BACE1 Protease: A QM/MM and QTAIM Study. Int. J. Quant. Chem. 2015;115:389–397. doi: 10.1002/qua.24854. DOI
Tosso R., Andujar A., Gutierrez L., Angelina E., Rodríguez R., Nogueras M., Baldoni H., Suvire F., Cobo J., Enriz R. A molecular Modeling Study of new inhibitors of Dihydrofolate Reductase. MD simulations, QM calculations and experimental corroboration. J. Chem. Inf. Model. 2013;53:2018–2032. doi: 10.1021/ci400178h. PubMed DOI
Ortiz J., Pigni N., Andujar S., Roitman G., Suvire F., Enriz R.D., Tapia A., Bastida J., Feresin G. Alkaloids from Hippeastrum argentinum and their Cholinesterase Inhibitory Activities: An in vitro and in silico study. J. Nat. Prod. 2016;79:1241–1248. doi: 10.1021/acs.jnatprod.5b00785. PubMed DOI
Bader R.F.W. Atoms in Molecules. A Quantum Theory. Clarendon; Oxford, UK: 1990.
Popelier P.L.A. Atoms in Molecules. An Introduction. Pearson Education; Harlow, UK: 1999.
Baroli B.M. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality? J. Pharm. Sci. 2010;99:21–50. doi: 10.1002/jps.21817. PubMed DOI
Barua S., Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today. 2014;9:223–243. doi: 10.1016/j.nantod.2014.04.008. PubMed DOI PMC
Mendelsohn R., Rerek M.E., Moore D.J. Infrared spectroscopy and microscopic imaging of stratum corneum models and skin. Phys. Chem. Chem. Phys. 2000;2:4651–4657. doi: 10.1039/b003861j. DOI
Marcot C., Lo M., Kjoller K., Domanov Y., Balooch G., Luengo G.S. Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source. Exp. Dermatol. 2013;22:417–437. doi: 10.1111/exd.12144. PubMed DOI
Bründermann E., Havenith M. SNIM: Scanning near-field infrared microscopy. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 2008;104:235–255. doi: 10.1039/b703982b. DOI
Treffer R., Böhme R., Deckert-Gaudig T., Lau K., Tiede S., Lin X., Deckert V. Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem. Soc. Trans. 2012;40:609–614. doi: 10.1042/BST20120033. PubMed DOI
Wallace D.C., Singh G., Lott M.T., Hodge J.A., Schurr T.G., Lezza A.M., Elsas L.J., Nikoskelainen E.K. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242:1427–1430. doi: 10.1126/science.3201231. PubMed DOI
Holt I.J., Harding A.E., Morgan-Hughes J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331:717–719. doi: 10.1038/331717a0. PubMed DOI
Brown G.C.N.D.G., Cooper C.E. Mitochondria and Cell Death. Princeton University Press; Princeton, NJ, USA: 1999.
Szewczyk A., Wojtczak L. Mitochondria as a pharmacological target. Pharmacol. Rev. 2002;54:101–127. doi: 10.1124/pr.54.1.101. PubMed DOI
Weissig V. Targeted drug delivery to mammalian mitochondria in living cells. Expert Opin. Drug Deliv. 2005;2:89–102. doi: 10.1517/17425247.2.1.89. PubMed DOI
Weiss M.J., Wong J.R., Ha C.S., Bleday R., Salem R.R., Steele G.D., Jr., Chen L.B. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc. Natl. Acad. Sci. USA. 1987;84:5444–5448. doi: 10.1073/pnas.84.15.5444. PubMed DOI PMC
Horobin R.W., Trapp S., Weissig V. Mitochondriotropics: A review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J. Control. Release. 2007;121:125–136. doi: 10.1016/j.jconrel.2007.05.040. PubMed DOI
Weissig V. From serendipity to mitochondria-targeted nanocarriers. Pharm. Res. 2011;28:2657–2668. doi: 10.1007/s11095-011-0556-9. PubMed DOI
Weissig V., Vetro-Widenhouse T.S., Rowe T.C. Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell. Biol. 1997;16:1483–1492. doi: 10.1089/dna.1997.16.1483. PubMed DOI
Rowe T.C., Weissig V., Lawrence J.W. Mitochondrial DNA metabolism targeting drugs. Adv. Drug Deliv. Rev. 2001;49:175–187. doi: 10.1016/S0169-409X(01)00133-8. PubMed DOI
Weissig V., Lasch J., Erdos G., Meyer H.W., Rowe T.C., Hughes J. DQAsomes: A novel potential drug and gene delivery system made from dequalinium. Pharm. Res. 1998;15:334–337. doi: 10.1023/A:1011991307631. PubMed DOI
Weissig V., Torchilin V.P. Towards mitochondrial gene therapy: DQAsomes as a strategy. J. Drug Target. 2001;9:1–13. doi: 10.3109/10611860108995628. PubMed DOI
Lyrawati D., Trounson A., Cram D. Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome. Pharm. Res. 2011;28:2848–2862. doi: 10.1007/s11095-011-0544-0. PubMed DOI
Weissig V. Mitochondria-specific nanocarriers for improving the proapoptotic activity of small molecules. Methods Enzymol. 2012;508:131–155. PubMed
Weissig V. DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: Preparation, characterization, and use. Methods Mol. Biol. 2015;1265:1–11. PubMed
Jang M.S., Zlobin A., Kast W.M., Miele L. Notch signaling as a target in multimodality cancer therapy. Curr. Opin. Mol. Ther. 2000;2:55–65. PubMed
Kumar R., Juillerat-Jeanneret L., Golshayan D. Notch antagonists: Potential modulators of cancer and inflammatory diseases. J. Med. Chem. 2016;59:7719–7737. doi: 10.1021/acs.jmedchem.5b01516. PubMed DOI
Takebe N., Nguyen D., Yang S.X. Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacol. Ther. 2014;141:140–149. doi: 10.1016/j.pharmthera.2013.09.005. PubMed DOI PMC
Lobry C., Oh P., Mansour M.R., Look A.T., Aifantis I. Notch signaling: Switching an oncogene to a tumor suppressor. Blood. 2014;123:2451–2459. doi: 10.1182/blood-2013-08-355818. PubMed DOI PMC
Loenarz C., Schofield C.J. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 2011;36:7–18. doi: 10.1016/j.tibs.2010.07.002. PubMed DOI
Lavaissiere L., Jia S., Nishiyama M., de la Monte S., Stern A.M., Wands J.R., Friedman P.A. Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma. J. Clin. Invest. 1996;98:1313–1323. doi: 10.1172/JCI118918. PubMed DOI PMC
Aihara A., Huang C.K., Olsen M.J., Lin Q., Chung W., Tang Q., Dong X., Wands J.R. A cell-surface beta-hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma. Hepatology. 2014;60:1302–1313. doi: 10.1002/hep.27275. PubMed DOI PMC
Iwagami Y., Huang C.K., Olsen M.J., Thomas J.M., Jang G., Kim M., Lin Q., Carlson R.I., Wagner C.E., Dong X., et al. Aspartate beta-hydroxylase modulates cellular senescence through glycogen synthase kinase 3beta in hepatocellular carcinoma. Hepatology. 2016;63:1213–1226. doi: 10.1002/hep.28411. PubMed DOI PMC
von Eiff C., Becker K., Machka K., Stammer H., Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study group. N. Engl. J. Med. 2001;344:11–16. doi: 10.1056/NEJM200101043440102. PubMed DOI
Keary R., Sanz-Gaitero M., van Raaij M.J., O’Mahony J., Fenton M., McAuliffe O., Hill C., Ross R.P., Coffey A. Characterization of a bacteriophage-derived murein peptidase for elimination of antibiotic-resistant Staphylococcus aureus. Curr. Protein Pept. Sci. 2015;17:183–190. doi: 10.2174/1389203716666151102105515. PubMed DOI
Sanz-Gaitero M., Keary R., García-Doval C., Coffey A., van Raaij M.J. Crystal structure of the lytic CHAP(K) domain of the endolysin LysK from Staphylococcus aureus bacteriophage K. Virol. J. 2014;11:133. doi: 10.1186/1743-422X-11-133. PubMed DOI PMC
Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC
David B., Wolfender J.L., Dias D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phyochem. Rev. 2014;14:299–315. doi: 10.1007/s11101-014-9367-z. DOI
Amirkia V., Heinrich M. Natural products and drug discovery: A survey of stakeholders in industry and academia. Front Pharmacol. 2015;6:237. doi: 10.3389/fphar.2015.00237. PubMed DOI PMC
Waltenberger B., Mocan A., Smejkal K., Heiss E.H., Atanasov A.G. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules. 2016;21:807. doi: 10.3390/molecules21060807. PubMed DOI PMC
Andersson J., Forssberg H., Zierath J.R. Avermectin and artemisinin—Revolutionary therapies against parasitic diseases. The Nobel Assembly at Karolinska Institutet. 2015. [(accessed on 20 September 2016)]. Available online: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/advanced-medicineprize2015.pdf.
World Health Organization . World malaria report 2015. WHO Press; Geneva, Switzerland: 2015.
Wiesner J., Ortmann R., Jomaa H., Schlitzer M. New antimalarial drugs. Angew. Chem. Int. Ed. 2003;42:5274–5293. doi: 10.1002/anie.200200569. PubMed DOI
Efferth T., Zacchino S., Georgiev M.I., Liu L., Wagner H., Panossian A. Nobel prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine. 2015;22:A1–A3. doi: 10.1016/j.phymed.2015.10.003. PubMed DOI
Hertweck C. Natural products as source of therapeutics against parasitic diseases. Angew. Chem. Int. Ed. 2015;54:14622–14624. doi: 10.1002/anie.201509828. PubMed DOI
Paddon C.J., Westfall P.J., Pitera D.J., Benjamin K., Fisher K., McPhee D., Leavell M.D., Tai A., Main A., Eng D., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–532. doi: 10.1038/nature12051. PubMed DOI
Diederich M., Muller F., Cerella C. Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem. Pharmacol. 2016 doi: 10.1016/j.bcp.2016.08.017. PubMed DOI
Radogna F., Cerella C., Gaigneaux A., Christov C., Dicato M., Diederich M. Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene. 2016;35:3839–3853. doi: 10.1038/onc.2015.455. PubMed DOI
Kim J., Sudbery P. Candida albicans, a major human fungal pathogen. J. Microbiol. 2011;49:171–177. doi: 10.1007/s12275-011-1064-7. PubMed DOI
Sanguinetti M., Posteraro B., Fiori B., Ranno S., Torelli R., Fadda G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob. Agents Chemother. 2005;49:668–679. doi: 10.1128/AAC.49.2.668-679.2005. PubMed DOI PMC
Musiol R., Kowalczyk W. Azole antimycotics—A highway to new drugs or a dead end? Curr. Med. Chem. 2012;19:1378–1388. doi: 10.2174/092986712799462621. PubMed DOI
Holmes A.R., Lin Y.H., Niimi K., Lamping E., Keniya M., Niimi M., Tanabe K., Monk B.C., Cannon R.D. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob. Agents Chemother. 2008;52:3851–3862. doi: 10.1128/AAC.00463-08. PubMed DOI PMC
Polanski J., Kurczyk A., Bak A., Musiol R. Privileged structures—dream or reality: Preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 2012;19:1921–1945. doi: 10.2174/092986712800167356. PubMed DOI
Musiol R., Jampilek J., Buchta V., Silva L., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. doi: 10.1016/j.bmc.2006.01.016. PubMed DOI
Cieslik W., Musiol R., Nycz J.E., Jampilek J., Vejsova M., Wolff M., Machura B., Polanski J. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg. Med. Chem. 2012;20:6960–6968. doi: 10.1016/j.bmc.2012.10.027. PubMed DOI
Musiol R., Serda M., Hensel-Bielowka S., Polanski J. Quinoline-based antifungals. Curr. Med. Chem. 2010;17:1960–1973. doi: 10.2174/092986710791163966. PubMed DOI
Mrozek-Wilczkiewicz A., Spaczynska E., Malarz K., Cieslik W., Rams-Baron M., Kryštof V., Musiol R. Design, synthesis and in vitro activity of anticancer styrylquinolines. The p53 independent mechanism of action. PLoS ONE. 2015;10:e0142678. doi: 10.1371/journal.pone.0142678. PubMed DOI PMC
Huisgen R. In: 1,3-Dipolar Cycloaddition Chemistry. Padwa A., editor. Volume 1 Wiley; New York, NY, USA: 1984.
Meldal M. Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002;67:3057–3064. PubMed
Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. A Stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI
Buckley B.R., Heaney H. Mechanistic investigations of copper(I)-catalysed alkyne–azide cycloaddition reactions. Top. Heterocycl. Chem. 2012;28:1–30.
Košmrlj J. Click Triazoles, Topics in Heterocyclic Chemistry. Springer; Berlin/Heidelberg, Germany: 2012.
Zheng T., Rouhanifard S., Jalloh A., Wu P. Click triazoles for bioconjugation. Top. Heterocycl. Chem. 2012;28:163–184. PubMed PMC
Watkinson M. Click triazoles as chemosensors. Top. Heterocycl. Chem. 2012;28:109–136. PubMed PMC
Lee S., Flood A.H. Binding anions in rigid and reconfigurable triazole receptors. Top. Heterocycl. Chem. 2012;28:85–108.
Chow H.F., Lo C.M., Chen Y. Triazole-based polymer gels. Top. Heterocycl. Chem. 2012;28:137–162.
Mignani S., Zhou Y., Lecourt T., Micouin L. Recent developments in the synthesis 1,4,5-trisubstituted triazoles. Top. Heterocycl. Chem. 2012;28:185–232.
Crowley J.D., McMorran D.A. “Click-Triazole” coordination chemistry: Exploiting 1,4-disubstituted-1,2,3-triazoles as ligands. Top. Heterocycl. Chem. 2012;28:31–84.
Urankar D., Pinter B., Pevec A., de Proft F., Turel I., Košmrlj J. Click-Triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. Inorg. Chem. 2010;49:4820–4829. doi: 10.1021/ic902354e. PubMed DOI
Bolje A., Urankar D., Košmrlj J. Synthesis and NMR analysis of 1,4-disubstituted 1,2,3-triazoles tethered to pyridine, pyrimidine, and pyrazine rings. Eur. J. Org. Chem. 2014:8167–8181. doi: 10.1002/ejoc.201403100. DOI
Kafka S., Hauke S., Salčinović A., Soidinsalo O., Urankar D., Košmrlj J. Copper(I)-catalyzed [3+2]cycloaddition of 3-azidoquinoline-2,4(1H,3H)-diones with terminal alkynes. Molecules. 2011;16:4070–4081. doi: 10.3390/molecules16054070. DOI
Urankar D., Pevec A., Turel I., Košmrlj J. Pyridyl conjugated 1,2,3-triazole is a versatile coordination ability ligand enabling supramolecular associations. Cryst. Growth Des. 2010;10:4920–4927. doi: 10.1021/cg100993k. DOI
Pinter B., Demšar A., Urankar D., de Proft F., Košmrlj J. Conformational fluxionality in a palladium(II) complex of flexible click chelator 4-phenyl-1-(2-picolyl)-1,2,3-triazole: A dynamic NMR and DFT study. Polyhedron. 2011;30:2368–2373. doi: 10.1016/j.poly.2011.05.015. DOI
Bratsos I., Urankar D., Zangrando E., Genova P., Košmrlj J., Alessio E., Turel I. 1-(2-Picolyl)-substituted 1,2,3-triazole as novel chelating ligand for the preparation of ruthenium complexes with potential anticancer activity. Dalton Trans. 2011;40:5188–5199. doi: 10.1039/c0dt01807d. PubMed DOI
Urankar D., Košmrlj J. Concise and diversity-oriented synthesis of ligand arm-functionalized azoamides. J. Comb. Chem. 2008;10:981–985. doi: 10.1021/cc8001475. PubMed DOI
Urankar D., Steinbücher M., Kosjek J., Košmrlj J. N-(Propargyl)diazenecarboxamides for ‘click’ conjugation and their 1,3-dipolar cycloadditions with azidoalkylamines in the presence of Cu(II) Tetrahedron. 2010;66:2602–2613. doi: 10.1016/j.tet.2010.02.042. DOI
Urankar D., Pevec A., Košmrlj J. Synthesis and characterization of platinum(II) complexes with a diazenecarboxamide-appended picolyl-triazole ligand. Eur. J. Inorg. Chem. 2011:1921–1929. doi: 10.1002/ejic.201001051. DOI
Urankar D., Košmrlj J. Preparation of diazenecarboxamide-carboplatin conjugates by click chemistry. Inorg. Chim. Acta. 2010;363:3817–3822. doi: 10.1016/j.ica.2010.07.031. DOI
Stojanović N., Urankar D., Brozović A., Ambriović-Ristov A., Osmak M., Košmrlj J. Design and evaluation of biological activity of diazenecarboxamide-extended cisplatin and carboplatin analogues. Acta Chim. Slov. 2013;60:368–374. PubMed
Bolje A., Košmrlj J. A Selective approach to pyridine appended 1,2,3-triazolium salts. Org. Lett. 2013;15:5084–5087. doi: 10.1021/ol4024584. PubMed DOI
Bolje A., Hohloch S., Urankar D., Pevec A., Gazvoda M., Sarkar B., Košmrlj J. Exploring the scope of pyridyl- and picolyl-functionalized 1,2,3-triazol-5-ylidenes in bidentate coordination to ruthenium(II) cymene chloride complexes. Organometallics. 2014;33:2588–2598. doi: 10.1021/om500287t. DOI
Hohloch S., Kaiser S., Duecker F.L., Bolje A., Maity R., Košmrlj J., Sarkar B. Catalytic oxygenation of sp3 “C–H” bonds with Ir(III) complexes of chelating triazoles and mesoionic carbenes. Dalton Trans. 2015;44:686–693. doi: 10.1039/C4DT02879A. PubMed DOI
Bolje A., Hohloch S., van der Meer M., Košmrlj J., Sarkar B. RuII, OsII, and IrIII Complexes with chelating pyridyl–mesoionic carbene ligands: Structural characterization and applications in transfer hydrogenation catalysis. Chem. Eur. J. 2015;21:6756–6764. doi: 10.1002/chem.201406481. PubMed DOI
Bolje A., Hohloch S., Košmrlj J., Sarkar B. RuII, IrIII and OsII mesoionic carbene complexes: Efficient catalysts for transfer hydrogenation of selected functionalities. Dalton Trans. 2016;45:15983–15993. doi: 10.1039/C6DT01324D. PubMed DOI
Gazvoda M., Virant M., Pevec A., Urankar D., Bolje A., Kočevar M., Košmrlj J. A mesoionic bis(Py-tzNHC) palladium(II) complex catalyses “green” Sonogashira reaction through an unprecedented mechanism. Chem. Commun. 2016;52:1571–1574. doi: 10.1039/C5CC08717A. PubMed DOI
Wagner F.F., Comins D.L. Expedient five-step synthesis of SIB-1508Y from natural nicotine. J. Org. Chem. 2006;71:8673–8675. doi: 10.1021/jo0616052. PubMed DOI
Kilpin K.J., Crot S., Riedel T., Kitchen J.A., Dyson P.J. Ruthenium(II) and osmium(II) 1,2,3-triazolylidene organometallics: A preliminary investigation into the biological activity of ‘click’ carbene complexes. Dalton Trans. 2014;43:1443–1448. doi: 10.1039/C3DT52584H. PubMed DOI
Steiner I., Stojanović N., Bolje A., Brozovic A., Polančec D., Ambriović-Ristov A., Radić Stojković M., Piantanida I., Eljuga D., Košmrlj J., et al. Discovery of ‘click’ 1,2,3-triazolium salts as potential anticancer drugs. Radiol. Oncol. 2016;50:280–288. doi: 10.1515/raon-2016-0027. PubMed DOI PMC
Laney D. 3-D Data Management: Controlling Data Volume, Velocity. META Group Inc.; Stamford, CT, USA: 2001.
Szlezák N., Evers M., Wang J., Pérez L. The role of big data and advanced analytics in drug discovery, development, and commercialization. Clin. Pharmacol. Ther. 2014;95:492–4955. doi: 10.1038/clpt.2014.29. PubMed DOI
Todeschini R., Consonni V. Handbook of Molecular Descriptors. Wiley-VCH; Weinheim, Germany: 2000.
Polanski J., Gasteiger J. Computer Representation of Chemical Compounds. In: Leszczynski J., Puzyn T., editors. Handbook of Computational Chemistry. Springer; Dordrecht, Germany: 2016.
Polanski J. Chemoinformatics. In: Walczak B., Tauler R., Brown S., editors. Comprehensive Chemometrics. Volume 4. Elsevier; Amsterdam, The Netherlands: 2009. pp. 459–505.
Polanski J. Big data in structure-property studies—From definitions to models. In: Leszczynski J., Roy K., editors. Advances in QSAR Modeling with Applications in Pharmaceutical, Chemical, Food, Agricultural, and Environmental Sciences. Springer; Berlin/Heidelberg, Germany: 2017. In press.
PASS, Prediction of Activity Spectra for Substances. [(accessed on 20 September 2016)]. Available online: www.pharmaexpert.ru/passonline.
Polanski J., Kucia U., Duszkiewicz R., Kurczyk A., Magdziarz T., Gasteiger J. Molecular descriptor data explains market prices of the large commercial chemical compound library. Sci. Rep. 2016;6:28521. doi: 10.1038/srep28521. PubMed DOI PMC
Synthesis of Bis(1,2,3-Triazole) Functionalized Quinoline-2,4-Diones