The Eighth Central European Conference "Chemistry towards Biology": Snapshot

. 2016 Oct 17 ; 21 (10) : . [epub] 20161017

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu kongresy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27763518

Grantová podpora
P 25971 Austrian Science Fund FWF - Austria

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.

Biotechnology Department Teagasc Moorepark Food Research Centre Fermoy P61 C996 Co Cork Ireland

Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czech Republic

Departamento de Estructura de Macromoleculas Centro Nacional de Biotecnologia Calle Darwin 3 28049 Madrid Spain

Department of Biological Chemistry Faculty of Chemistry University of Wroclaw F Joliot Curie 14 50 383 Wroclaw Poland

Department of Biological Sciences Cork Institute of Technology Bishopstown T12 P928 Cork Ireland

Department of Medical Chemistry College of Pharmacy Glendale Midwestern University 19555 N 59th Avenue Glendale 85308 AZ USA

Department of Natural Drugs Faculty of Pharmacy University of Veterinary and Pharmaceutical Sciences Brno Palackého 1 61242 Brno Czech Republic

Department of Pharmaceutical Botany Iuliu Hațieganu University of Medicine and Pharmacy 8 Victor Babes 400012 Cluj Napoca Romania

Department of Pharmaceutical Chemistry Faculty of Pharmacy Comenius University Odbojárov 10 83232 Bratislava Slovakia

Department of Pharmacognosy Faculty of Life Sciences University of Vienna Althanstrasse 14 1090 Vienna Austria

Department of Pharmacognosy Institute of Pharmacy University of Innsbruck Innrain 80 82 4 6020 Innsbruck Austria

Department of Pharmacy College of Pharmacy Seoul National University 1 Gwanak ro 08826 Seoul Korea

Department of Physical Chemistry Faculty of Chemical Engineering University of Chemistry and Technology Technická 5 16628 Prague 6 Czech republic

Facultad de Química Bioquímica y Farmacia Universidad Nacional de San Luis Chacabuco 917 5700 San Luis Argentina

Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia

Institute of Chemistry University of Silesia Szkolna 9 40007 Katowice Poland

Institute of Genetics and Animal Breeding of the Polish Academy of Sciences ul Postepu 36A 05552 Jastrzebiec Poland

Instituto Multidisciplinario de Investigaciones Biológicas de San Luis Ejercito de Los Andes 950 5700 San Luis Argentina

Laboratory of Structural Chemistry and Biology and MTA ELTE Protein Modeling Research Group at the Institute of Chemistry Eötvös Loránd University 1518 112 PO Box 32 H 1053 Budapest Hungary

National Centre for Biomolecular Research Faculty of Science Masaryk University Kamenice 5 62500 Brno Czech Republic

Zobrazit více v PubMed

The 8th Central European Conference “Chemistry towards Biology”. [(accessed on 15 October 2016)]. Available online: http://sites.google.com/site/ctb2016brno.

Dunker A.K., Lawson J.D., Brown C.J., Williams R.M., Romero P., Oh J.S., Oldfield C.J., Campen A.M., Ratliff C.M., Hipps K.W., et al. Intrinsically disordered protein. J. Mol. Graph. Model. 2001;19:26–59. doi: 10.1016/S1093-3263(00)00138-8. PubMed DOI

Dunker A.K., Obradovic Z., Romero P., Garner E.C., Brown C.J. Intrinsic protein disorder in complete genomes. Gen. Inform. Ser. Workshop Gen. Inform. 2000;11:161–171. PubMed

Motáčková V., Nováček J., Zawadzka-Kazimierczuk A., Kazimierczuk K., Žídek L., Šanderová H., Krásný L., Kożmiński W., Sklenář V. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J. Biomol. NMR. 2010;48:169–177. PubMed PMC

Nováček J., Zawadska-Kazimierczuk A., Motáčková V., Žídek L., Kożmiński W., Sklenář V. 5D 13C-detected NMR experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J. Biomol. NMR. 2011;50:1–11. doi: 10.1007/s10858-011-9496-2. PubMed DOI

Motáčková V., Kadeřávek P., Rabatinová A., Šanderová H., Nováček J., Otrusinová O., Krásný L., Sklenář V., Žídek L. Structural study of the partially disordered full-length δ subunit of RNA polymerasefrom Bacillus subtilis. ChemBioChem. 2013;14:1772–1779. PubMed

Nováček J., Haba N.Y., Chill J.H., Žídek L., Sklenář V. 4D non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCACON experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins. J. Biomol. NMR. 2012;53:139–148. doi: 10.1007/s10858-012-9631-8. PubMed DOI

Nováček J., Janda L., Dopitová R., Žídek L., Sklenář V. Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: Transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J. Biomol. NMR. 2013;56:291–301. doi: 10.1007/s10858-013-9761-7. PubMed DOI

Kadeřávek P., Zapletal V., Rabatinová A., Krásný L., Sklenář V., Žídek L. Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J. Biomol. NMR. 2014;58:193–207. doi: 10.1007/s10858-014-9816-4. PubMed DOI

Kadeřávek P., Zapletal V., Fiala R., Srb P., Padrta P., Přecechtělová J., Šoltésová M., Kowalewski J., Wildmalm G., Chmelík J., Jr., et al. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies. J. Magn. Reson. 2016;266:23–40. doi: 10.1016/j.jmr.2016.02.016. PubMed DOI

Nováček J., Žídek L., Sklenář V. Toward optimal-resolution NMR of intrinsically disordered proteins. J. Magn. Reson. 2014;241:41–52. doi: 10.1016/j.jmr.2013.12.008. PubMed DOI

Carulla N., Zhou M., Giralt E., Robinson C.V., Dobson C.M. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Acc. Chem. Res. 2010;43:1072–1079. doi: 10.1021/ar9002784. PubMed DOI

Perczel A., Hudáky P., Pálfi V.K. Dead-end street of protein folding: Thermodynamic rationale of amyloid fibril formation. J. Am. Chem. Soc. 2007;129:14959–14965. doi: 10.1021/ja0747122. PubMed DOI

Neidigh J.W., Fesinmeyer R.M., Andersen N.H. Designing a 20-residue protein. Nat. Struct. Biol. 2002;9:425–430. doi: 10.1038/nsb798. PubMed DOI

Perczel A., Hollosi M., Tusnady G., Fasman G.D. Convex constraint analysis—A natural deconvolution of circular-dichroism curves of proteins. Protein Eng. 1991;4:669–679. doi: 10.1093/protein/4.6.669. PubMed DOI

Perczel A., Park K., Fasman G.D. Analysis of the circular-dichroism spectrum of proteins using the convex constraint algorithm - a practical guide. Anal. Biochem. 1992;203:83–93. doi: 10.1016/0003-2697(92)90046-A. PubMed DOI

Farkas V., Jákli I., Tóth G.K., Perczel A. Aromatic cluster sensor of protein folding: Near-UV electronic circular dichroism bands assigned to fold compactness. Chem. Eur. J. 2016 doi: 10.1002/chem.201602455. PubMed DOI

Rovó P., Stráner P., Láng A., Bartha I., Huszár K., Nyitray L., Perczel A. Structural insights into the Trp-Cage folding intermediate formation. Chemistry. 2013;19:2628–2640. doi: 10.1002/chem.201203764. PubMed DOI

Kardos J., Kiss B., Micsonai A., Rovó P., Menyhárd K.D., Kovács J., Tóth K.G., Perczel A. Phosphorylation as conformational switch from the native to amyloid state: Trp-Cage as a protein aggregation model. J. Phys. Chem. B. 2015;119:2946–2955. doi: 10.1021/jp5124234. PubMed DOI

Doolittle R.F., Fasman G.D. Redundancies in protein sequences. In: Fasman G.D., editor. Prediction of Protein Structure and the Principles of Protein Conformation. Plenum Press; New York, NY, USA: 1989. pp. 599–624.

Perutz M.F., Windle A.H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature. 2001;412:143–144. doi: 10.1038/35084141. PubMed DOI

Ross C.A., Margolis R.L., Becher M.W., Wood J.D., Engelender S., Cooper J.K., Sharp A.H. In: Neuronal Degeneration and Regeneration: From Basic Mechanisms to Prospects for Therapy. Van Leeuwen F.W., Salehi A., Giger R.J., Holtmaat A.J.G.D., Verhaagen J., editors. Elsevier; Amsterdam, The Netherlands: 1998. pp. 397–419.

Salichs E., Ledda A., Mularoni L., Alba M.M., de la Luna S. Genome-wide analysis of histidine repeats reveals their role in the localization of human proteins to the nuclear speckles compartment. PLoS Genet. 2009;5:e1000397. doi: 10.1371/journal.pgen.1000397. PubMed DOI PMC

Cheng T., Xia W., Wang P., Huang F., Wang J., Sun H. Histidine-rich proteins in prokaryotes: Metal homeostasis and environmental habitat-related occurrence. Metallomics. 2013;5:1423–1429. doi: 10.1039/c3mt00059a. PubMed DOI

Gaberc-Porekar V., Menartr V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods. 2001;49:335–360. doi: 10.1016/S0165-022X(01)00207-X. PubMed DOI

Watly J., Simonoysky E., Wieczorek R., Barbosa N., Miller Y., Kozlowski H. Insight into the coordination and the binding sites of Cu2+ by the histidyl-6-tag using experimental and computational tools. Inorg. Chem. 2014;53:6675–6683. doi: 10.1021/ic500387u. PubMed DOI

Watly J., Simonovsky E., Barbosa N., Spodzieja M., Wieczorek R., Rodziewicz-Motowidlo S., Miller Y., Kozlowski H. African viper poly-his tag peptide fragment efficiently binds metal ions and is folded into an α-helical structure. Inorg. Chem. 2015;54:7692–7702. doi: 10.1021/acs.inorgchem.5b01029. PubMed DOI

Brasili D., Watly J., Simonovsky E., Guerrini R., Barbosa N.A., Wieczorek R., Remelli M., Kozlowski H., Miller Y. The unusual metal ion binding ability of histidyl tags and their mutated derivatives. Dalton Trans. 2016;45:5629–5639. doi: 10.1039/C5DT04747A. PubMed DOI

Favreau P., Cheneval O., Menin L., Michalet S., Gaertner H., Principaud F., Thai R., Ménez A., Bulet P., Stöcklin R. The venom of the snake genus Atheris contains a new class of peptides with clusters of histidine and glycine residues. Rapid Commun. Mass Spectrom. 2007;21:406–412. doi: 10.1002/rcm.2853. PubMed DOI

Wagstaff S.C., Favreau P., Cheneval O., Laing G.D., Wilkinson M.C., Miller R.L., Stocklin R., Harrison R.A. Molecular characterisation of endogenous snake venom metalloproteinase inhibitors. Biochem. Biophys. Res. Commun. 2008;365:650–656. doi: 10.1016/j.bbrc.2007.11.027. PubMed DOI

Chaturvedi K.S., Henderson J.P. Pathogenic adaptations to host-derived antibacterial copper. Front. Cell. Infect. Microbiol. 2014;4:3. doi: 10.3389/fcimb.2014.00003. PubMed DOI PMC

Kozlowski H., Potocki S., Remelli M., Rowinska-Zyrek M., Valensin D. Specific metal ion binding sites in unstructured regions of proteins. Coord. Chem. Rev. 2013;257:2625–2638. doi: 10.1016/j.ccr.2013.01.024. DOI

Krzywoszynska K., Rowinska-Zyrek M., Witkowska D., Potocki S., Luczkowski M., Kozlowski H. Polythiol binding to biologically relevant metal ions. Dalton Trans. 2011;40:10434–10439. doi: 10.1039/c1dt10562k. PubMed DOI

Kolkowska P., Krzywoszynska K., Potocki S., Chetana P.R., Spodzieja M., Rodziewicz-Motowidlo S., Kozlowski H. Specificity of the Zn2+, Cd2+ and Ni2+ ion binding sites in the loop domain of the HypA protein. Dalton Trans. 2015;44:9887–9900. doi: 10.1039/C5DT01005E. PubMed DOI

Bourne P.E., Gu J. Structural Bioinformatics. 2nd ed. John Wiley & Sons; New York, NY, USA: 2009.

Bourne P.E., Weissig H. Structural Bioinformatics. Wiley; New York, NY, USA: 2003.

Sehnal D., Pravda L., Svobodová-Vařeková R., Ionescu C.M., Koča J. PatternQuery: Web application for fast detection of biomacromolecular fragments in entire Protein Data Bank. Nucleic Acids Res. 2015;43:W383–W388. doi: 10.1093/nar/gkv561. PubMed DOI PMC

Sehnal D., Svobodová-Vařeková R., Huber H.J., Geidl S., Ionescu C.M., Wimmerová M., Koča J. SiteBinder: An improved approach for comparing multiple protein structural motifs. J. Chem. Inf. Model. 2012;52:343–359. doi: 10.1021/ci200444d. PubMed DOI

Svobodová-Vařeková R., Jaiswal D., Sehnal D., Ionescu C.M., Geidl S., Pravda L., Horský V., Wimmerová M., Koča J. MotiveValidator: Interactive web-based validation of ligand and residue structure in biomolecular complexes. Nucleic Acids Res. 2014;42:W227–W233. PubMed PMC

Sehnal D., Svobodová-Vařeková R., Pravda L., Ionescu C.M., Geidl S., Horský V., Jaiswal D., Wimmerová M., Koča J. ValidatorDB—Database of up-to-date and comprehensive validation results for ligands and non-standard residues from the Protein Data Bank. Nucleic Acids Res. 2014;43:D369–D375. doi: 10.1093/nar/gku1118. PubMed DOI PMC

Ionescu C.M., Sehnal D., Falginella F.L., Pant P., Pravda L., Bouchal T., Svobodová-Vařeková R., Geidl S., Koča J. AtomicChargeCalculator: Interactive web-based calculation of atomic charges in large biomolecular complexes and drug like molecules. J. Chemoinform. 2015;7:50–62. doi: 10.1186/s13321-015-0099-x. PubMed DOI PMC

Berka K., Hanák O., Sehnal D., Banáš P., Navrátilová V., Jaiswal D., Ionescu C.M., Svobodová-Vařeková R., Koča J., Otyepka M. MOLEonline 2.0: Interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res. 2012;40:W222–W227. doi: 10.1093/nar/gks363. PubMed DOI PMC

Sehnal D., Svobodová-Vařeková R., Berka K., Pravda L., Navrátilová V., Banáš P., Ionescu C.M., Otyepka M., Koča J. MOLE 2.0: Advanced approach for analysis of biomacromolecular channels. J. Cheminform. 2013;5:39. doi: 10.1186/1758-2946-5-39. PubMed DOI PMC

WebChemistry Services and Apps, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/WebChemistry.

PatternQuery, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/PatternQuery.

SiteBinder, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/SiteBinder.

Wang X., Snoeyink J. Defining and computing optimum RMSD for gapped and weighted multiplestructure alignment. IEEE/ACM Trans Comput. Biol. Bioinform. 2008;5:525–533. doi: 10.1109/TCBB.2008.92. PubMed DOI

MotiveValidator, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/MotiveValidator.

Validator, D.B. Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/ValidatorDB.

AtomicChargeCalculator, Masaryk University. [(accessed on 15 October 2016)]. Available online: http://ncbr.muni.cz/ACC.

Protein Data Bank in Europe: Bringing Structure to Biology. [(accessed on 15 October 2016)]. Available online: http://www.ebi.ac.uk/pdbe/coordinates.

Andujar S., Suvire F., Angelina E., Peruchena N., Cabedo N., Cortes D., Enriz R. Searching the “biologically relevant” conformation of dopamine. A Computational approach”. J. Chem. Inf. Model. 2012;52:99–112. doi: 10.1021/ci2004225. PubMed DOI

Parraga J., Andujar A., Rojas S., Gutierrez L., El Aquad N., Sanz M., Enriz R., Cabedo N., Cortes D. Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D2-like selective ligands. Eur. J. Med. Chem. 2016;122:27–42. doi: 10.1016/j.ejmech.2016.06.009. PubMed DOI

Vega-Hissi E., Tosso R., Enriz R., Lucas Gutierrez J. Molecular Insight into the Interaction Mechanisms of Amino-2H-Imidazole Derivatives with BACE1 Protease: A QM/MM and QTAIM Study. Int. J. Quant. Chem. 2015;115:389–397. doi: 10.1002/qua.24854. DOI

Tosso R., Andujar A., Gutierrez L., Angelina E., Rodríguez R., Nogueras M., Baldoni H., Suvire F., Cobo J., Enriz R. A molecular Modeling Study of new inhibitors of Dihydrofolate Reductase. MD simulations, QM calculations and experimental corroboration. J. Chem. Inf. Model. 2013;53:2018–2032. doi: 10.1021/ci400178h. PubMed DOI

Ortiz J., Pigni N., Andujar S., Roitman G., Suvire F., Enriz R.D., Tapia A., Bastida J., Feresin G. Alkaloids from Hippeastrum argentinum and their Cholinesterase Inhibitory Activities: An in vitro and in silico study. J. Nat. Prod. 2016;79:1241–1248. doi: 10.1021/acs.jnatprod.5b00785. PubMed DOI

Bader R.F.W. Atoms in Molecules. A Quantum Theory. Clarendon; Oxford, UK: 1990.

Popelier P.L.A. Atoms in Molecules. An Introduction. Pearson Education; Harlow, UK: 1999.

Baroli B.M. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality? J. Pharm. Sci. 2010;99:21–50. doi: 10.1002/jps.21817. PubMed DOI

Barua S., Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today. 2014;9:223–243. doi: 10.1016/j.nantod.2014.04.008. PubMed DOI PMC

Mendelsohn R., Rerek M.E., Moore D.J. Infrared spectroscopy and microscopic imaging of stratum corneum models and skin. Phys. Chem. Chem. Phys. 2000;2:4651–4657. doi: 10.1039/b003861j. DOI

Marcot C., Lo M., Kjoller K., Domanov Y., Balooch G., Luengo G.S. Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source. Exp. Dermatol. 2013;22:417–437. doi: 10.1111/exd.12144. PubMed DOI

Bründermann E., Havenith M. SNIM: Scanning near-field infrared microscopy. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 2008;104:235–255. doi: 10.1039/b703982b. DOI

Treffer R., Böhme R., Deckert-Gaudig T., Lau K., Tiede S., Lin X., Deckert V. Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem. Soc. Trans. 2012;40:609–614. doi: 10.1042/BST20120033. PubMed DOI

Wallace D.C., Singh G., Lott M.T., Hodge J.A., Schurr T.G., Lezza A.M., Elsas L.J., Nikoskelainen E.K. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242:1427–1430. doi: 10.1126/science.3201231. PubMed DOI

Holt I.J., Harding A.E., Morgan-Hughes J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331:717–719. doi: 10.1038/331717a0. PubMed DOI

Brown G.C.N.D.G., Cooper C.E. Mitochondria and Cell Death. Princeton University Press; Princeton, NJ, USA: 1999.

Szewczyk A., Wojtczak L. Mitochondria as a pharmacological target. Pharmacol. Rev. 2002;54:101–127. doi: 10.1124/pr.54.1.101. PubMed DOI

Weissig V. Targeted drug delivery to mammalian mitochondria in living cells. Expert Opin. Drug Deliv. 2005;2:89–102. doi: 10.1517/17425247.2.1.89. PubMed DOI

Weiss M.J., Wong J.R., Ha C.S., Bleday R., Salem R.R., Steele G.D., Jr., Chen L.B. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc. Natl. Acad. Sci. USA. 1987;84:5444–5448. doi: 10.1073/pnas.84.15.5444. PubMed DOI PMC

Horobin R.W., Trapp S., Weissig V. Mitochondriotropics: A review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J. Control. Release. 2007;121:125–136. doi: 10.1016/j.jconrel.2007.05.040. PubMed DOI

Weissig V. From serendipity to mitochondria-targeted nanocarriers. Pharm. Res. 2011;28:2657–2668. doi: 10.1007/s11095-011-0556-9. PubMed DOI

Weissig V., Vetro-Widenhouse T.S., Rowe T.C. Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell. Biol. 1997;16:1483–1492. doi: 10.1089/dna.1997.16.1483. PubMed DOI

Rowe T.C., Weissig V., Lawrence J.W. Mitochondrial DNA metabolism targeting drugs. Adv. Drug Deliv. Rev. 2001;49:175–187. doi: 10.1016/S0169-409X(01)00133-8. PubMed DOI

Weissig V., Lasch J., Erdos G., Meyer H.W., Rowe T.C., Hughes J. DQAsomes: A novel potential drug and gene delivery system made from dequalinium. Pharm. Res. 1998;15:334–337. doi: 10.1023/A:1011991307631. PubMed DOI

Weissig V., Torchilin V.P. Towards mitochondrial gene therapy: DQAsomes as a strategy. J. Drug Target. 2001;9:1–13. doi: 10.3109/10611860108995628. PubMed DOI

Lyrawati D., Trounson A., Cram D. Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome. Pharm. Res. 2011;28:2848–2862. doi: 10.1007/s11095-011-0544-0. PubMed DOI

Weissig V. Mitochondria-specific nanocarriers for improving the proapoptotic activity of small molecules. Methods Enzymol. 2012;508:131–155. PubMed

Weissig V. DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: Preparation, characterization, and use. Methods Mol. Biol. 2015;1265:1–11. PubMed

Jang M.S., Zlobin A., Kast W.M., Miele L. Notch signaling as a target in multimodality cancer therapy. Curr. Opin. Mol. Ther. 2000;2:55–65. PubMed

Kumar R., Juillerat-Jeanneret L., Golshayan D. Notch antagonists: Potential modulators of cancer and inflammatory diseases. J. Med. Chem. 2016;59:7719–7737. doi: 10.1021/acs.jmedchem.5b01516. PubMed DOI

Takebe N., Nguyen D., Yang S.X. Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacol. Ther. 2014;141:140–149. doi: 10.1016/j.pharmthera.2013.09.005. PubMed DOI PMC

Lobry C., Oh P., Mansour M.R., Look A.T., Aifantis I. Notch signaling: Switching an oncogene to a tumor suppressor. Blood. 2014;123:2451–2459. doi: 10.1182/blood-2013-08-355818. PubMed DOI PMC

Loenarz C., Schofield C.J. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 2011;36:7–18. doi: 10.1016/j.tibs.2010.07.002. PubMed DOI

Lavaissiere L., Jia S., Nishiyama M., de la Monte S., Stern A.M., Wands J.R., Friedman P.A. Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma. J. Clin. Invest. 1996;98:1313–1323. doi: 10.1172/JCI118918. PubMed DOI PMC

Aihara A., Huang C.K., Olsen M.J., Lin Q., Chung W., Tang Q., Dong X., Wands J.R. A cell-surface beta-hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma. Hepatology. 2014;60:1302–1313. doi: 10.1002/hep.27275. PubMed DOI PMC

Iwagami Y., Huang C.K., Olsen M.J., Thomas J.M., Jang G., Kim M., Lin Q., Carlson R.I., Wagner C.E., Dong X., et al. Aspartate beta-hydroxylase modulates cellular senescence through glycogen synthase kinase 3beta in hepatocellular carcinoma. Hepatology. 2016;63:1213–1226. doi: 10.1002/hep.28411. PubMed DOI PMC

von Eiff C., Becker K., Machka K., Stammer H., Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study group. N. Engl. J. Med. 2001;344:11–16. doi: 10.1056/NEJM200101043440102. PubMed DOI

Keary R., Sanz-Gaitero M., van Raaij M.J., O’Mahony J., Fenton M., McAuliffe O., Hill C., Ross R.P., Coffey A. Characterization of a bacteriophage-derived murein peptidase for elimination of antibiotic-resistant Staphylococcus aureus. Curr. Protein Pept. Sci. 2015;17:183–190. doi: 10.2174/1389203716666151102105515. PubMed DOI

Sanz-Gaitero M., Keary R., García-Doval C., Coffey A., van Raaij M.J. Crystal structure of the lytic CHAP(K) domain of the endolysin LysK from Staphylococcus aureus bacteriophage K. Virol. J. 2014;11:133. doi: 10.1186/1743-422X-11-133. PubMed DOI PMC

Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC

David B., Wolfender J.L., Dias D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phyochem. Rev. 2014;14:299–315. doi: 10.1007/s11101-014-9367-z. DOI

Amirkia V., Heinrich M. Natural products and drug discovery: A survey of stakeholders in industry and academia. Front Pharmacol. 2015;6:237. doi: 10.3389/fphar.2015.00237. PubMed DOI PMC

Waltenberger B., Mocan A., Smejkal K., Heiss E.H., Atanasov A.G. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules. 2016;21:807. doi: 10.3390/molecules21060807. PubMed DOI PMC

Andersson J., Forssberg H., Zierath J.R. Avermectin and artemisinin—Revolutionary therapies against parasitic diseases. The Nobel Assembly at Karolinska Institutet. 2015. [(accessed on 20 September 2016)]. Available online: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/advanced-medicineprize2015.pdf.

World Health Organization . World malaria report 2015. WHO Press; Geneva, Switzerland: 2015.

Wiesner J., Ortmann R., Jomaa H., Schlitzer M. New antimalarial drugs. Angew. Chem. Int. Ed. 2003;42:5274–5293. doi: 10.1002/anie.200200569. PubMed DOI

Efferth T., Zacchino S., Georgiev M.I., Liu L., Wagner H., Panossian A. Nobel prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine. 2015;22:A1–A3. doi: 10.1016/j.phymed.2015.10.003. PubMed DOI

Hertweck C. Natural products as source of therapeutics against parasitic diseases. Angew. Chem. Int. Ed. 2015;54:14622–14624. doi: 10.1002/anie.201509828. PubMed DOI

Paddon C.J., Westfall P.J., Pitera D.J., Benjamin K., Fisher K., McPhee D., Leavell M.D., Tai A., Main A., Eng D., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–532. doi: 10.1038/nature12051. PubMed DOI

Diederich M., Muller F., Cerella C. Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem. Pharmacol. 2016 doi: 10.1016/j.bcp.2016.08.017. PubMed DOI

Radogna F., Cerella C., Gaigneaux A., Christov C., Dicato M., Diederich M. Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene. 2016;35:3839–3853. doi: 10.1038/onc.2015.455. PubMed DOI

Kim J., Sudbery P. Candida albicans, a major human fungal pathogen. J. Microbiol. 2011;49:171–177. doi: 10.1007/s12275-011-1064-7. PubMed DOI

Sanguinetti M., Posteraro B., Fiori B., Ranno S., Torelli R., Fadda G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob. Agents Chemother. 2005;49:668–679. doi: 10.1128/AAC.49.2.668-679.2005. PubMed DOI PMC

Musiol R., Kowalczyk W. Azole antimycotics—A highway to new drugs or a dead end? Curr. Med. Chem. 2012;19:1378–1388. doi: 10.2174/092986712799462621. PubMed DOI

Holmes A.R., Lin Y.H., Niimi K., Lamping E., Keniya M., Niimi M., Tanabe K., Monk B.C., Cannon R.D. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob. Agents Chemother. 2008;52:3851–3862. doi: 10.1128/AAC.00463-08. PubMed DOI PMC

Polanski J., Kurczyk A., Bak A., Musiol R. Privileged structures—dream or reality: Preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 2012;19:1921–1945. doi: 10.2174/092986712800167356. PubMed DOI

Musiol R., Jampilek J., Buchta V., Silva L., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. doi: 10.1016/j.bmc.2006.01.016. PubMed DOI

Cieslik W., Musiol R., Nycz J.E., Jampilek J., Vejsova M., Wolff M., Machura B., Polanski J. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg. Med. Chem. 2012;20:6960–6968. doi: 10.1016/j.bmc.2012.10.027. PubMed DOI

Musiol R., Serda M., Hensel-Bielowka S., Polanski J. Quinoline-based antifungals. Curr. Med. Chem. 2010;17:1960–1973. doi: 10.2174/092986710791163966. PubMed DOI

Mrozek-Wilczkiewicz A., Spaczynska E., Malarz K., Cieslik W., Rams-Baron M., Kryštof V., Musiol R. Design, synthesis and in vitro activity of anticancer styrylquinolines. The p53 independent mechanism of action. PLoS ONE. 2015;10:e0142678. doi: 10.1371/journal.pone.0142678. PubMed DOI PMC

Huisgen R. In: 1,3-Dipolar Cycloaddition Chemistry. Padwa A., editor. Volume 1 Wiley; New York, NY, USA: 1984.

Meldal M. Peptidotriazoles on solid phase:  [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002;67:3057–3064. PubMed

Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. A Stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI

Buckley B.R., Heaney H. Mechanistic investigations of copper(I)-catalysed alkyne–azide cycloaddition reactions. Top. Heterocycl. Chem. 2012;28:1–30.

Košmrlj J. Click Triazoles, Topics in Heterocyclic Chemistry. Springer; Berlin/Heidelberg, Germany: 2012.

Zheng T., Rouhanifard S., Jalloh A., Wu P. Click triazoles for bioconjugation. Top. Heterocycl. Chem. 2012;28:163–184. PubMed PMC

Watkinson M. Click triazoles as chemosensors. Top. Heterocycl. Chem. 2012;28:109–136. PubMed PMC

Lee S., Flood A.H. Binding anions in rigid and reconfigurable triazole receptors. Top. Heterocycl. Chem. 2012;28:85–108.

Chow H.F., Lo C.M., Chen Y. Triazole-based polymer gels. Top. Heterocycl. Chem. 2012;28:137–162.

Mignani S., Zhou Y., Lecourt T., Micouin L. Recent developments in the synthesis 1,4,5-trisubstituted triazoles. Top. Heterocycl. Chem. 2012;28:185–232.

Crowley J.D., McMorran D.A. “Click-Triazole” coordination chemistry: Exploiting 1,4-disubstituted-1,2,3-triazoles as ligands. Top. Heterocycl. Chem. 2012;28:31–84.

Urankar D., Pinter B., Pevec A., de Proft F., Turel I., Košmrlj J. Click-Triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. Inorg. Chem. 2010;49:4820–4829. doi: 10.1021/ic902354e. PubMed DOI

Bolje A., Urankar D., Košmrlj J. Synthesis and NMR analysis of 1,4-disubstituted 1,2,3-triazoles tethered to pyridine, pyrimidine, and pyrazine rings. Eur. J. Org. Chem. 2014:8167–8181. doi: 10.1002/ejoc.201403100. DOI

Kafka S., Hauke S., Salčinović A., Soidinsalo O., Urankar D., Košmrlj J. Copper(I)-catalyzed [3+2]cycloaddition of 3-azidoquinoline-2,4(1H,3H)-diones with terminal alkynes. Molecules. 2011;16:4070–4081. doi: 10.3390/molecules16054070. DOI

Urankar D., Pevec A., Turel I., Košmrlj J. Pyridyl conjugated 1,2,3-triazole is a versatile coordination ability ligand enabling supramolecular associations. Cryst. Growth Des. 2010;10:4920–4927. doi: 10.1021/cg100993k. DOI

Pinter B., Demšar A., Urankar D., de Proft F., Košmrlj J. Conformational fluxionality in a palladium(II) complex of flexible click chelator 4-phenyl-1-(2-picolyl)-1,2,3-triazole: A dynamic NMR and DFT study. Polyhedron. 2011;30:2368–2373. doi: 10.1016/j.poly.2011.05.015. DOI

Bratsos I., Urankar D., Zangrando E., Genova P., Košmrlj J., Alessio E., Turel I. 1-(2-Picolyl)-substituted 1,2,3-triazole as novel chelating ligand for the preparation of ruthenium complexes with potential anticancer activity. Dalton Trans. 2011;40:5188–5199. doi: 10.1039/c0dt01807d. PubMed DOI

Urankar D., Košmrlj J. Concise and diversity-oriented synthesis of ligand arm-functionalized azoamides. J. Comb. Chem. 2008;10:981–985. doi: 10.1021/cc8001475. PubMed DOI

Urankar D., Steinbücher M., Kosjek J., Košmrlj J. N-(Propargyl)diazenecarboxamides for ‘click’ conjugation and their 1,3-dipolar cycloadditions with azidoalkylamines in the presence of Cu(II) Tetrahedron. 2010;66:2602–2613. doi: 10.1016/j.tet.2010.02.042. DOI

Urankar D., Pevec A., Košmrlj J. Synthesis and characterization of platinum(II) complexes with a diazenecarboxamide-appended picolyl-triazole ligand. Eur. J. Inorg. Chem. 2011:1921–1929. doi: 10.1002/ejic.201001051. DOI

Urankar D., Košmrlj J. Preparation of diazenecarboxamide-carboplatin conjugates by click chemistry. Inorg. Chim. Acta. 2010;363:3817–3822. doi: 10.1016/j.ica.2010.07.031. DOI

Stojanović N., Urankar D., Brozović A., Ambriović-Ristov A., Osmak M., Košmrlj J. Design and evaluation of biological activity of diazenecarboxamide-extended cisplatin and carboplatin analogues. Acta Chim. Slov. 2013;60:368–374. PubMed

Bolje A., Košmrlj J. A Selective approach to pyridine appended 1,2,3-triazolium salts. Org. Lett. 2013;15:5084–5087. doi: 10.1021/ol4024584. PubMed DOI

Bolje A., Hohloch S., Urankar D., Pevec A., Gazvoda M., Sarkar B., Košmrlj J. Exploring the scope of pyridyl- and picolyl-functionalized 1,2,3-triazol-5-ylidenes in bidentate coordination to ruthenium(II) cymene chloride complexes. Organometallics. 2014;33:2588–2598. doi: 10.1021/om500287t. DOI

Hohloch S., Kaiser S., Duecker F.L., Bolje A., Maity R., Košmrlj J., Sarkar B. Catalytic oxygenation of sp3 “C–H” bonds with Ir(III) complexes of chelating triazoles and mesoionic carbenes. Dalton Trans. 2015;44:686–693. doi: 10.1039/C4DT02879A. PubMed DOI

Bolje A., Hohloch S., van der Meer M., Košmrlj J., Sarkar B. RuII, OsII, and IrIII Complexes with chelating pyridyl–mesoionic carbene ligands: Structural characterization and applications in transfer hydrogenation catalysis. Chem. Eur. J. 2015;21:6756–6764. doi: 10.1002/chem.201406481. PubMed DOI

Bolje A., Hohloch S., Košmrlj J., Sarkar B. RuII, IrIII and OsII mesoionic carbene complexes: Efficient catalysts for transfer hydrogenation of selected functionalities. Dalton Trans. 2016;45:15983–15993. doi: 10.1039/C6DT01324D. PubMed DOI

Gazvoda M., Virant M., Pevec A., Urankar D., Bolje A., Kočevar M., Košmrlj J. A mesoionic bis(Py-tzNHC) palladium(II) complex catalyses “green” Sonogashira reaction through an unprecedented mechanism. Chem. Commun. 2016;52:1571–1574. doi: 10.1039/C5CC08717A. PubMed DOI

Wagner F.F., Comins D.L. Expedient five-step synthesis of SIB-1508Y from natural nicotine. J. Org. Chem. 2006;71:8673–8675. doi: 10.1021/jo0616052. PubMed DOI

Kilpin K.J., Crot S., Riedel T., Kitchen J.A., Dyson P.J. Ruthenium(II) and osmium(II) 1,2,3-triazolylidene organometallics: A preliminary investigation into the biological activity of ‘click’ carbene complexes. Dalton Trans. 2014;43:1443–1448. doi: 10.1039/C3DT52584H. PubMed DOI

Steiner I., Stojanović N., Bolje A., Brozovic A., Polančec D., Ambriović-Ristov A., Radić Stojković M., Piantanida I., Eljuga D., Košmrlj J., et al. Discovery of ‘click’ 1,2,3-triazolium salts as potential anticancer drugs. Radiol. Oncol. 2016;50:280–288. doi: 10.1515/raon-2016-0027. PubMed DOI PMC

Laney D. 3-D Data Management: Controlling Data Volume, Velocity. META Group Inc.; Stamford, CT, USA: 2001.

Szlezák N., Evers M., Wang J., Pérez L. The role of big data and advanced analytics in drug discovery, development, and commercialization. Clin. Pharmacol. Ther. 2014;95:492–4955. doi: 10.1038/clpt.2014.29. PubMed DOI

Todeschini R., Consonni V. Handbook of Molecular Descriptors. Wiley-VCH; Weinheim, Germany: 2000.

Polanski J., Gasteiger J. Computer Representation of Chemical Compounds. In: Leszczynski J., Puzyn T., editors. Handbook of Computational Chemistry. Springer; Dordrecht, Germany: 2016.

Polanski J. Chemoinformatics. In: Walczak B., Tauler R., Brown S., editors. Comprehensive Chemometrics. Volume 4. Elsevier; Amsterdam, The Netherlands: 2009. pp. 459–505.

Polanski J. Big data in structure-property studies—From definitions to models. In: Leszczynski J., Roy K., editors. Advances in QSAR Modeling with Applications in Pharmaceutical, Chemical, Food, Agricultural, and Environmental Sciences. Springer; Berlin/Heidelberg, Germany: 2017. In press.

PASS, Prediction of Activity Spectra for Substances. [(accessed on 20 September 2016)]. Available online: www.pharmaexpert.ru/passonline.

Polanski J., Kucia U., Duszkiewicz R., Kurczyk A., Magdziarz T., Gasteiger J. Molecular descriptor data explains market prices of the large commercial chemical compound library. Sci. Rep. 2016;6:28521. doi: 10.1038/srep28521. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Synthesis of Bis(1,2,3-Triazole) Functionalized Quinoline-2,4-Diones

. 2018 Sep 10 ; 23 (9) : . [epub] 20180910

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace