Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

. 2010 Nov ; 48 (3) : 169-77. [epub] 20101002

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20890634

A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, δ subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.

Zobrazit více v PubMed

Atreya H, Eletsky A, Szyperski T. Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G(2)FT NMR experiments. J Am Chem Soc. 2005;127(13):4554–4555. doi: 10.1021/ja042562e. PubMed DOI

Bermel W, Bertini I, Felli I, Piccioli M, Pierattelli R. C-13-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Mag Res Sp. 2006;48(1):25–45. doi: 10.1016/j.pnmrs.2005.09.002. DOI

Bermel W, Bertini I, Felli I, Lee Y, Luchinat C, Pierattelli R. Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc. 2006;128(12):3918–3919. doi: 10.1021/ja0582206. PubMed DOI

Bussell R, Eliezer D. Residual structure and dynamics in Parkinson’s disease-associated mutants of alpha-synuclein. J Biol Chem. 2001;276(49):45,996–46,003. doi: 10.1074/jbc.M106777200. PubMed DOI

Clark S, Losick R, Pero J. New RNA-polymerase from Bacillus-subtilis infected with phage PBS2. Nature. 1974;252(5478):21–24. doi: 10.1038/252021a0. PubMed DOI

Coggins B, Zhou P. Polar Fourier transforms of radially sampled NMR data. J Magn Reson. 2006;182(1):84–95. doi: 10.1016/j.jmr.2006.06.016. PubMed DOI

Coggins B, Zhou P. Sampling of the NMR time domain along concentric rings. J Magn Reson. 2007;184(2):207–221. doi: 10.1016/j.jmr.2006.10.002. PubMed DOI PMC

Coggins B, Venters R, Zhou P. Filtered backprojection for the reconstruction of a high-resolution (4,2)D CH3-NHNOESY spectrum on a 29 kDa protein. J Am Chem Soc. 2005;127(33):11,562–11,563. doi: 10.1021/ja053110k. PubMed DOI

Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6(3):277–293. doi: 10.1007/BF00197809. PubMed DOI

DeSaro F, Woody A, Helmann J. Structural-analysis of the Bacillus-subtilis delta-factor - a polyanion which displaces RNA from RNA-polymerase. J Mol Biol. 1995;252(2):189–202. doi: 10.1006/jmbi.1995.0487. PubMed DOI

Ding K, Gronenborn A. Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins. J Magn Reson. 2002;156(2):262–268. doi: 10.1006/jmre.2002.2537. PubMed DOI

Dippé M, Wold E. Antialiasing through stochastic sampling, ACM SIGGRAPH. Comput Graphics. 1985;19:69–78. doi: 10.1145/325165.325182. DOI

Dunker AK, Silman I, Uversky VN, Sussman JL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol. 2008;18(6):756–764. doi: 10.1016/j.sbi.2008.10.002. PubMed DOI

Dyson H, Wright P. Unfolded proteins and protein folding studied by NMR. Chem Rev. 2004;104(8):3607–3622. doi: 10.1021/cr030403s. PubMed DOI

Dyson H, Wright P. Intrinsically unstructured proteins and their functions. Nature Rev Mol Cell Biol. 2005;6(3):197–208. doi: 10.1038/nrm1589. PubMed DOI

Eliezer D. Characterizing residual structure in disordered protein states using nuclear magnetic resonance. Methods Mol Biol. 2007;350:49–67. PubMed PMC

Eliezer D. Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol. 2009;19(1):23–30. doi: 10.1016/j.sbi.2008.12.004. PubMed DOI PMC

Fink A. Natively unfolded proteins. Curr Opin Struct Biol. 2005;15(1):35–41. doi: 10.1016/j.sbi.2005.01.002. PubMed DOI

Fiorito F, Hiller S, Wider G, Wüthrich K. Automated resonance assignment of proteins: 6D APSY-NMR. J Biomol NMR. 2006;35(1):27–37. doi: 10.1007/s10858-006-0030-x. PubMed DOI PMC

Hiller S, Wasmer C, Wider G, Wüthrich K. Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR Spectroscopy. J Am Chem Soc. 2007;129(35):10,823–10,828. doi: 10.1021/ja072564+. PubMed DOI

Kazimierczuk K, Koźmiński W, Zhukov I. Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson. 2006;179(2):323–328. doi: 10.1016/j.jmr.2006.02.001. PubMed DOI

Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I. Random sampling of evolution time space and Fourier transform processing. J Biomol NMR. 2006;36(3):157–168. doi: 10.1007/s10858-006-9077-y. PubMed DOI

Kazimierczuk K, Zawadzka A, Koźmiński W. Optimization of random time domain sampling in multidimensional NMR. J Magn Reson. 2008;192(1):123–130. doi: 10.1016/j.jmr.2008.02.003. PubMed DOI

Kazimierczuk K, Zawadzka A, Koźmiński W. Narrow peaks and high dimensionalities: Exploiting the advantages of random sampling. J Magn Reson. 2009;197(2):219–228. doi: 10.1016/j.jmr.2009.01.003. PubMed DOI

Kazimierczuk K, Zawadzka-Kazimierczuk A, Koźmiński W. Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Reson. 2010;205(2):286–292. doi: 10.1016/j.jmr.2010.05.012. PubMed DOI

Kim S, Szyperski T. GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc. 2003;125(5):1385–1393. doi: 10.1021/ja028197d. PubMed DOI

Knoblich K, Whittaker S, Ludwig C, Michiels P, Jiang T, Schaffhausen B, Guenther U. Backbone assignment of the N-terminal polyomavirus large T antigen. Biomol NMR Assignments. 2009;3(1):119–123. doi: 10.1007/s12104-009-9155-7. PubMed DOI

Koźmiński W, Zhukov I. Multiple quadrature detection in reduced dimensionality experiments. J Biomol NMR. 2003;26(2):157–166. doi: 10.1023/A:1023550224391. PubMed DOI

Kupče E, Freeman R. Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc. 2003;125(46):13,958–13,959. PubMed

Kupče E, Freeman R. Hyperdimensional NMR spectroscopy. Prog Nucl Mag Res Sp. 2008;52(1):22–30. doi: 10.1016/j.pnmrs.2007.07.003. DOI

Malmodin D, Billeter M. Robust and versatile interpretation of spectra with coupled evolution periods using multi-way desomposition. Magn Reson Chem. 2004;44(S1):185–195. doi: 10.1002/mrc.1824. PubMed DOI

Marion D. Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction. J Biomol NMR. 2006;36(1):45–54. doi: 10.1007/s10858-006-9066-1. PubMed DOI

Marsh J, Singh V, Jia Z, Forman-Kay J. Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: Implications for fibrillation. Prot Sci. 2006;15(12):2795–2804. doi: 10.1110/ps.062465306. PubMed DOI PMC

Motáčková V, Kubíčková M, Kožíšek M, Grantz-Šašková K, Švec M, Žídek L, Sklenář V. Backbone H-1, C-13, and N-15 NMR assignment for the inactive form of the retroviral protease of the murine intracisternal A-type particle, inMIA-14 PR. Biomol NMR Assignments. 2009;3(2):261–264. doi: 10.1007/s12104-009-9189-x. PubMed DOI

Motáčková V, Šanderová H, Žídek L, Nováček J, Padrta P, Švenková A, Korelusová J, Jonák J, Krásný L, Sklenář V. Solution structure of the N-terminal domain of Bacillus subtilis delta subunit of RNA polymerase and its classification based on structural homologs. Proteins Struct Funct Bioinf. 2010;78(7):1807–1810. PubMed

Mukrasch M, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M. Structural polymorphism of 441-residue Tau at single sesidue resolution. PLoS Biol. 2009;7(2):399–414. doi: 10.1371/journal.pbio.1000034. PubMed DOI PMC

Pannetier N, Houben K, Blanchard L, Marion D. Optimized 3D-NMR sampling for resonance assignment of partially unfolded proteins. J Magn Reson. 2007;186(1):142–149. doi: 10.1016/j.jmr.2007.01.013. PubMed DOI

Perez Y, Gairi M, Pons M, Bernado P. Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: Insights into the role of phosphorylation of the unique domain. J Mol Biol. 2009;391(1):136–148. doi: 10.1016/j.jmb.2009.06.018. PubMed DOI

Peti W, Smith L, Redfield C, Schwalbe H. Chemical shifts in denatured proteins: Resonance assignments for denatured ubiquitin and comparisons with other denatured proteins. J Biomol NMR. 2001;19(2):153–165. doi: 10.1023/A:1008307323283. PubMed DOI

Rovnyak D, Frueh D, Sastry M, Sun Z, Stern A, Hoch J, Wagner G. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson. 2004;170(1):15–21. doi: 10.1016/j.jmr.2004.05.016. PubMed DOI

Sattler M, Schmidt P, Schleucher J, Schedletzky O, Glaser S, Griesinger C. Novel pulse sequence with sensitivity enhancement fir in-phase coherence transfer employing pulsed-field gradients. J Magn Reson B. 1995;108(3):235–242. doi: 10.1006/jmrb.1995.1128. DOI

Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Mag Res Sp. 1999;34(2):93–158. doi: 10.1016/S0079-6565(98)00025-9. DOI

Tugarinov V, Kay L, Ibraghimov I, Orekhov V. High-resolution four-dimensional H-1-C-13 NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc. 2005;127(8):2767–2775. doi: 10.1021/ja044032o. PubMed DOI

Ward J, Sodhi J, McGuffin L, Buxton B, Jones D. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol. 2004;337(3):635–645. doi: 10.1016/j.jmb.2004.02.002. PubMed DOI

Yao J, Chung J, Eliezer D, Wright P, Dyson H. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. Biochemistry. 2001;40(12):3561–3571. doi: 10.1021/bi002776i. PubMed DOI

Zawadzka-Kazimierczuk A, Kazimierczuk K, Koźmiński W. A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins. J Magn Reson. 2010;202(1):109–116. doi: 10.1016/j.jmr.2009.10.006. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

What the Hel: recent advances in understanding rifampicin resistance in bacteria

. 2023 Nov 01 ; 47 (6) : .

Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions

. 2020 Apr 07 ; 118 (7) : 1621-1633. [epub] 20200229

The Structural Properties in Solution of the Intrinsically Mixed Folded Protein Ataxin-3

. 2018 Jul 03 ; 115 (1) : 59-71.

Multivalency regulates activity in an intrinsically disordered transcription factor

. 2018 May 01 ; 7 () : . [epub] 20180501

Triple resonance ¹⁵Ν NMR relaxation experiments for studies of intrinsically disordered proteins

. 2017 Nov ; 69 (3) : 133-146. [epub] 20171025

The Eighth Central European Conference "Chemistry towards Biology": Snapshot

. 2016 Oct 17 ; 21 (10) : . [epub] 20161017

Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2

. 2015 ; 10 (3) : e0119899. [epub] 20150305

Spectral density mapping protocols for analysis of molecular motions in disordered proteins

. 2014 Mar ; 58 (3) : 193-207. [epub] 20140211

Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c

. 2013 Aug ; 56 (4) : 291-301. [epub] 20130723

4D non-uniformly sampled HCBCACON and ¹J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins

. 2012 Jun ; 53 (2) : 139-48. [epub] 20120513

5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion

. 2011 May ; 50 (1) : 1-11. [epub] 20110320

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...