Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20890634
PubMed Central
PMC2966349
DOI
10.1007/s10858-010-9447-3
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- deuterium MeSH
- Fourierova analýza MeSH
- izotopy dusíku MeSH
- izotopy uhlíku MeSH
- molekulární sekvence - údaje MeSH
- nukleární magnetická rezonance biomolekulární metody MeSH
- proteiny chemie MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deuterium MeSH
- izotopy dusíku MeSH
- izotopy uhlíku MeSH
- proteiny MeSH
A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, δ subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.
Zobrazit více v PubMed
Atreya H, Eletsky A, Szyperski T. Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G(2)FT NMR experiments. J Am Chem Soc. 2005;127(13):4554–4555. doi: 10.1021/ja042562e. PubMed DOI
Bermel W, Bertini I, Felli I, Piccioli M, Pierattelli R. C-13-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Mag Res Sp. 2006;48(1):25–45. doi: 10.1016/j.pnmrs.2005.09.002. DOI
Bermel W, Bertini I, Felli I, Lee Y, Luchinat C, Pierattelli R. Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc. 2006;128(12):3918–3919. doi: 10.1021/ja0582206. PubMed DOI
Bussell R, Eliezer D. Residual structure and dynamics in Parkinson’s disease-associated mutants of alpha-synuclein. J Biol Chem. 2001;276(49):45,996–46,003. doi: 10.1074/jbc.M106777200. PubMed DOI
Clark S, Losick R, Pero J. New RNA-polymerase from Bacillus-subtilis infected with phage PBS2. Nature. 1974;252(5478):21–24. doi: 10.1038/252021a0. PubMed DOI
Coggins B, Zhou P. Polar Fourier transforms of radially sampled NMR data. J Magn Reson. 2006;182(1):84–95. doi: 10.1016/j.jmr.2006.06.016. PubMed DOI
Coggins B, Zhou P. Sampling of the NMR time domain along concentric rings. J Magn Reson. 2007;184(2):207–221. doi: 10.1016/j.jmr.2006.10.002. PubMed DOI PMC
Coggins B, Venters R, Zhou P. Filtered backprojection for the reconstruction of a high-resolution (4,2)D CH3-NHNOESY spectrum on a 29 kDa protein. J Am Chem Soc. 2005;127(33):11,562–11,563. doi: 10.1021/ja053110k. PubMed DOI
Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6(3):277–293. doi: 10.1007/BF00197809. PubMed DOI
DeSaro F, Woody A, Helmann J. Structural-analysis of the Bacillus-subtilis delta-factor - a polyanion which displaces RNA from RNA-polymerase. J Mol Biol. 1995;252(2):189–202. doi: 10.1006/jmbi.1995.0487. PubMed DOI
Ding K, Gronenborn A. Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins. J Magn Reson. 2002;156(2):262–268. doi: 10.1006/jmre.2002.2537. PubMed DOI
Dippé M, Wold E. Antialiasing through stochastic sampling, ACM SIGGRAPH. Comput Graphics. 1985;19:69–78. doi: 10.1145/325165.325182. DOI
Dunker AK, Silman I, Uversky VN, Sussman JL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol. 2008;18(6):756–764. doi: 10.1016/j.sbi.2008.10.002. PubMed DOI
Dyson H, Wright P. Unfolded proteins and protein folding studied by NMR. Chem Rev. 2004;104(8):3607–3622. doi: 10.1021/cr030403s. PubMed DOI
Dyson H, Wright P. Intrinsically unstructured proteins and their functions. Nature Rev Mol Cell Biol. 2005;6(3):197–208. doi: 10.1038/nrm1589. PubMed DOI
Eliezer D. Characterizing residual structure in disordered protein states using nuclear magnetic resonance. Methods Mol Biol. 2007;350:49–67. PubMed PMC
Eliezer D. Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol. 2009;19(1):23–30. doi: 10.1016/j.sbi.2008.12.004. PubMed DOI PMC
Fink A. Natively unfolded proteins. Curr Opin Struct Biol. 2005;15(1):35–41. doi: 10.1016/j.sbi.2005.01.002. PubMed DOI
Fiorito F, Hiller S, Wider G, Wüthrich K. Automated resonance assignment of proteins: 6D APSY-NMR. J Biomol NMR. 2006;35(1):27–37. doi: 10.1007/s10858-006-0030-x. PubMed DOI PMC
Hiller S, Wasmer C, Wider G, Wüthrich K. Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR Spectroscopy. J Am Chem Soc. 2007;129(35):10,823–10,828. doi: 10.1021/ja072564+. PubMed DOI
Kazimierczuk K, Koźmiński W, Zhukov I. Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson. 2006;179(2):323–328. doi: 10.1016/j.jmr.2006.02.001. PubMed DOI
Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I. Random sampling of evolution time space and Fourier transform processing. J Biomol NMR. 2006;36(3):157–168. doi: 10.1007/s10858-006-9077-y. PubMed DOI
Kazimierczuk K, Zawadzka A, Koźmiński W. Optimization of random time domain sampling in multidimensional NMR. J Magn Reson. 2008;192(1):123–130. doi: 10.1016/j.jmr.2008.02.003. PubMed DOI
Kazimierczuk K, Zawadzka A, Koźmiński W. Narrow peaks and high dimensionalities: Exploiting the advantages of random sampling. J Magn Reson. 2009;197(2):219–228. doi: 10.1016/j.jmr.2009.01.003. PubMed DOI
Kazimierczuk K, Zawadzka-Kazimierczuk A, Koźmiński W. Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Reson. 2010;205(2):286–292. doi: 10.1016/j.jmr.2010.05.012. PubMed DOI
Kim S, Szyperski T. GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc. 2003;125(5):1385–1393. doi: 10.1021/ja028197d. PubMed DOI
Knoblich K, Whittaker S, Ludwig C, Michiels P, Jiang T, Schaffhausen B, Guenther U. Backbone assignment of the N-terminal polyomavirus large T antigen. Biomol NMR Assignments. 2009;3(1):119–123. doi: 10.1007/s12104-009-9155-7. PubMed DOI
Koźmiński W, Zhukov I. Multiple quadrature detection in reduced dimensionality experiments. J Biomol NMR. 2003;26(2):157–166. doi: 10.1023/A:1023550224391. PubMed DOI
Kupče E, Freeman R. Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc. 2003;125(46):13,958–13,959. PubMed
Kupče E, Freeman R. Hyperdimensional NMR spectroscopy. Prog Nucl Mag Res Sp. 2008;52(1):22–30. doi: 10.1016/j.pnmrs.2007.07.003. DOI
Malmodin D, Billeter M. Robust and versatile interpretation of spectra with coupled evolution periods using multi-way desomposition. Magn Reson Chem. 2004;44(S1):185–195. doi: 10.1002/mrc.1824. PubMed DOI
Marion D. Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction. J Biomol NMR. 2006;36(1):45–54. doi: 10.1007/s10858-006-9066-1. PubMed DOI
Marsh J, Singh V, Jia Z, Forman-Kay J. Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: Implications for fibrillation. Prot Sci. 2006;15(12):2795–2804. doi: 10.1110/ps.062465306. PubMed DOI PMC
Motáčková V, Kubíčková M, Kožíšek M, Grantz-Šašková K, Švec M, Žídek L, Sklenář V. Backbone H-1, C-13, and N-15 NMR assignment for the inactive form of the retroviral protease of the murine intracisternal A-type particle, inMIA-14 PR. Biomol NMR Assignments. 2009;3(2):261–264. doi: 10.1007/s12104-009-9189-x. PubMed DOI
Motáčková V, Šanderová H, Žídek L, Nováček J, Padrta P, Švenková A, Korelusová J, Jonák J, Krásný L, Sklenář V. Solution structure of the N-terminal domain of Bacillus subtilis delta subunit of RNA polymerase and its classification based on structural homologs. Proteins Struct Funct Bioinf. 2010;78(7):1807–1810. PubMed
Mukrasch M, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M. Structural polymorphism of 441-residue Tau at single sesidue resolution. PLoS Biol. 2009;7(2):399–414. doi: 10.1371/journal.pbio.1000034. PubMed DOI PMC
Pannetier N, Houben K, Blanchard L, Marion D. Optimized 3D-NMR sampling for resonance assignment of partially unfolded proteins. J Magn Reson. 2007;186(1):142–149. doi: 10.1016/j.jmr.2007.01.013. PubMed DOI
Perez Y, Gairi M, Pons M, Bernado P. Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: Insights into the role of phosphorylation of the unique domain. J Mol Biol. 2009;391(1):136–148. doi: 10.1016/j.jmb.2009.06.018. PubMed DOI
Peti W, Smith L, Redfield C, Schwalbe H. Chemical shifts in denatured proteins: Resonance assignments for denatured ubiquitin and comparisons with other denatured proteins. J Biomol NMR. 2001;19(2):153–165. doi: 10.1023/A:1008307323283. PubMed DOI
Rovnyak D, Frueh D, Sastry M, Sun Z, Stern A, Hoch J, Wagner G. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson. 2004;170(1):15–21. doi: 10.1016/j.jmr.2004.05.016. PubMed DOI
Sattler M, Schmidt P, Schleucher J, Schedletzky O, Glaser S, Griesinger C. Novel pulse sequence with sensitivity enhancement fir in-phase coherence transfer employing pulsed-field gradients. J Magn Reson B. 1995;108(3):235–242. doi: 10.1006/jmrb.1995.1128. DOI
Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Mag Res Sp. 1999;34(2):93–158. doi: 10.1016/S0079-6565(98)00025-9. DOI
Tugarinov V, Kay L, Ibraghimov I, Orekhov V. High-resolution four-dimensional H-1-C-13 NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc. 2005;127(8):2767–2775. doi: 10.1021/ja044032o. PubMed DOI
Ward J, Sodhi J, McGuffin L, Buxton B, Jones D. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol. 2004;337(3):635–645. doi: 10.1016/j.jmb.2004.02.002. PubMed DOI
Yao J, Chung J, Eliezer D, Wright P, Dyson H. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. Biochemistry. 2001;40(12):3561–3571. doi: 10.1021/bi002776i. PubMed DOI
Zawadzka-Kazimierczuk A, Kazimierczuk K, Koźmiński W. A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins. J Magn Reson. 2010;202(1):109–116. doi: 10.1016/j.jmr.2009.10.006. PubMed DOI
What the Hel: recent advances in understanding rifampicin resistance in bacteria
Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions
The Structural Properties in Solution of the Intrinsically Mixed Folded Protein Ataxin-3
Multivalency regulates activity in an intrinsically disordered transcription factor
Triple resonance ¹⁵Ν NMR relaxation experiments for studies of intrinsically disordered proteins
The Eighth Central European Conference "Chemistry towards Biology": Snapshot
Spectral density mapping protocols for analysis of molecular motions in disordered proteins