Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c

. 2013 Aug ; 56 (4) : 291-301. [epub] 20130723

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23877929

Microtubule-associated proteins (MAPs) are abundantly present in axons and dendrites, and have been shown to play crucial role during the neuronal morphogenesis. The period of main dendritic outgrowth and synaptogenesis coincides with high expression levels of one of MAPs, the MAP2c, in rats. The MAP2c is a 49.2 kDa intrinsically disordered protein. To achieve an atomic resolution characterization of such a large protein, we have developed a protocol based on the acquisition of two five-dimensional (13)C-directly detected NMR experiments. Our previously published 5D CACONCACO experiment (Nováček et al. in J Biomol NMR 50(1):1-11, 2011) provides the sequential assignment of the backbone resonances, which is not interrupted by the presence of the proline residues in the amino acid sequence. A novel 5D HC(CC-TOCSY)CACON experiment facilitates the assignment of the aliphatic side chain resonances. To streamline the data analysis, we have developed a semi-automated procedure for signal assignments. The obtained data provides the first atomic resolution insight into the conformational state of MAP2c and constitutes a model for further functional studies of MAPs.

Zobrazit více v PubMed

J Biomol NMR. 2001 Feb;19(2):153-65 PubMed

J Magn Reson. 2006 Apr;179(2):323-8 PubMed

J Biomol NMR. 2005 Sep;33(1):43-50 PubMed

J Am Chem Soc. 2010 Dec 29;132(51):18000-3 PubMed

J Magn Reson. 2004 Sep;170(1):15-21 PubMed

J Biol Chem. 2001 Oct 26;276(43):39950-8 PubMed

J Magn Reson. 2009 Apr;197(2):219-28 PubMed

J Biomol NMR. 2012 Jun;53(2):139-48 PubMed

J Am Chem Soc. 2006 Mar 29;128(12):3918-9 PubMed

J Magn Reson. 2007 May;186(1):142-9 PubMed

Curr Opin Struct Biol. 2005 Feb;15(1):35-41 PubMed

Biochemistry. 1996 Sep 24;35(38):12576-86 PubMed

J Am Chem Soc. 2005 Oct 5;127(39):13486-7 PubMed

J Biomol NMR. 2001 Jun;20(2):135-47 PubMed

J Am Chem Soc. 2010 Sep 1;132(34):11906-7 PubMed

J Cell Biol. 2002 Jun 24;157(7):1187-96 PubMed

EMBO J. 2001 Apr 2;20(7):1651-62 PubMed

J Am Chem Soc. 2007 Sep 5;129(35):10823-8 PubMed

J Biomol NMR. 2012 Apr;52(4):315-27 PubMed

J Neurosci. 2003 Oct 22;23(29):9479-90 PubMed

J Magn Reson. 2007 Feb;184(2):207-21 PubMed

J Cell Sci. 1996 Jan;109 ( Pt 1):91-9 PubMed

Int J Dev Neurosci. 2007 Apr;25(2):121-31 PubMed

J Biomol NMR. 2010 May;47(1):65-77 PubMed

Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208 PubMed

J Magn Reson. 2010 Aug;205(2):286-92 PubMed

J Magn Reson. 2009 Jun;198(2):275-81 PubMed

PLoS One. 2012;7(4):e34679 PubMed

Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5556-9 PubMed

J Magn Reson. 2011 Mar;209(1):94-100 PubMed

J Magn Reson. 2002 Jun;156(2):262-8 PubMed

J Biomol NMR. 1994 Jul;4(4):483-90 PubMed

J Magn Reson. 2008 May;192(1):123-30 PubMed

Trends Biochem Sci. 1998 Aug;23(8):307-11 PubMed

J Am Chem Soc. 2009 Oct 28;131(42):15339-45 PubMed

Protein Sci. 2006 Dec;15(12):2795-804 PubMed

FEBS Lett. 2005 Jun 13;579(15):3346-54 PubMed

J Am Chem Soc. 2003 Feb 5;125(5):1385-93 PubMed

J Biomol NMR. 2011 May;50(1):1-11 PubMed

BMC Genomics. 2008 Sep 16;9 Suppl 2:S1 PubMed

J Cell Sci. 1993 Oct;106 ( Pt 2):633-9 PubMed

Biochemistry. 2001 Mar 27;40(12):3561-71 PubMed

PLoS Biol. 2009 Feb 17;7(2):e34 PubMed

J Biomol NMR. 2012 Aug;53(4):293-301 PubMed

J Biomol NMR. 2001 May;20(1):49-60 PubMed

J Am Chem Soc. 2003 Nov 19;125(46):13958-9 PubMed

J Biomol NMR. 2010 Nov;48(3):169-77 PubMed

J Biol Chem. 1992 May 25;267(15):10737-42 PubMed

Genome Inform Ser Workshop Genome Inform. 2000;11:161-71 PubMed

J Magn Reson. 2006 Jan;178(1):56-64 PubMed

J Am Chem Soc. 2002 Mar 6;124(9):1982-93 PubMed

Curr Biol. 2004 Mar 9;14(5):363-71 PubMed

Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10894-8 PubMed

J Biol Chem. 2000 Jul 7;275(27):20578-87 PubMed

J Biomol NMR. 2012 Apr;52(4):329-37 PubMed

Biomol NMR Assign. 2009 Dec;3(2):261-4 PubMed

Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10876-81 PubMed

J Biomol NMR. 2004 Sep;30(1):11-23 PubMed

J Magn Reson. 1998 Apr;131(2):373-8 PubMed

J Am Chem Soc. 2006 May 3;128(17):5757-63 PubMed

Biochemistry. 2012 Mar 20;51(11):2224-31 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural basis of binding the unique N-terminal domain of microtubule-associated protein 2c to proteins regulating kinases of signaling pathways

. 2024 Aug ; 300 (8) : 107551. [epub] 20240711

Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions

. 2022 Oct ; 298 (10) : 102384. [epub] 20220817

Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions

. 2020 Apr 07 ; 118 (7) : 1621-1633. [epub] 20200229

Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences

. 2019 Mar 16 ; 9 (3) : . [epub] 20190316

Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics

. 2018 Aug 24 ; 293 (34) : 13297-13309. [epub] 20180620

Triple resonance ¹⁵Ν NMR relaxation experiments for studies of intrinsically disordered proteins

. 2017 Nov ; 69 (3) : 133-146. [epub] 20171025

Quantitative mapping of microtubule-associated protein 2c (MAP2c) phosphorylation and regulatory protein 14-3-3ζ-binding sites reveals key differences between MAP2c and its homolog Tau

. 2017 Apr 21 ; 292 (16) : 6715-6727. [epub] 20170303

The Eighth Central European Conference "Chemistry towards Biology": Snapshot

. 2016 Oct 17 ; 21 (10) : . [epub] 20161017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...