Evolution of tissue-specific expression of ancestral genes across vertebrates and insects
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
ERC-StG-LS2-637591
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ERCCoG-LS2-101002275
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
PubMed
38622362
DOI
10.1038/s41559-024-02398-5
PII: 10.1038/s41559-024-02398-5
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- hmyz * genetika MeSH
- molekulární evoluce * MeSH
- obratlovci * genetika MeSH
- orgánová specificita MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.
Australian Regenerative Medicine Institute Monash University Clayton Victoria Australia
Biology and BSI Florida International University Miami FL USA
Centre for Ecology and Conservation University of Exeter Penryn UK
Centre for Genomic Regulation Barcelona Institute of Science and Technology Barcelona Spain
Department of Parasitology University of South Bohemia České Budějovice Czech Republic
EMBL Australia; Victorian Node Monash University Clayton Victoria Australia
Institute of Evolutionary Biology Barcelona Catalonia Spain
Institute of Parasitology CAS České Budějovice Czech Republic
Sorbonne Université CNRS Biologie Intégrative des Organismes Marins; BIOM Banyuls sur Mer France
Zobrazit více v PubMed
Evans, S. D., Hughes, I. V., Gehling, J. G. & Droser, M. L. Discovery of the oldest bilaterian from the Ediacaran of South Australia. Proc. Natl Acad. Sci. USA 117, 7845–7850 (2020). PubMed DOI PMC
Brusca, R. C., Moore, W. & Shuster, S. M. Invertebrates 345–372 (Sinauer Associates, 2016).
Paps, J. & Holland, P. W. H. Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat. Commun. 9, 1730 (2018). PubMed DOI PMC
Fernández, R. & Gabaldón, T. Gene gain and loss across the metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020). PubMed DOI PMC
Lopez-Bigas, N., De, S. & Teichmann, S. A. Functional protein divergence in the evolution of Homo sapiens. Genome Biol. 9, R33 (2008). PubMed DOI PMC
Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006). PubMed DOI
King, M.-C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975). PubMed DOI
Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008). PubMed DOI
True, J. R. & Carroll, S. B. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18, 53–80 (2002). PubMed DOI
Arntfield, M. E. & van der Kooy, D. β-Cell evolution: how the pancreas borrowed from the brain: the shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship. Bioessays 33, 582–587 (2011). PubMed DOI
Almudi, I. et al. Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nat. Commun. 11, 2631 (2020). PubMed DOI PMC
Clark-Hachtel, C. M. & Tomoyasu, Y. Two sets of candidate crustacean wing homologues and their implication for the origin of insect wings. Nat. Ecol. Evol. 4, 1694–1702 (2020). PubMed DOI
Bruce, H. S. & Patel, N. H. Knockout of crustacean leg patterning genes suggests that insect wings and body walls evolved from ancient leg segments. Nat. Ecol. Evol. 4, 1703–1712 (2020). PubMed DOI
Martín-Durán, J. M. et al. Convergent evolution of bilaterian nerve cords. Nature 553, 45–50 (2018). PubMed DOI
Thomas, J. A., Welch, J. J., Lanfear, R. & Bromham, L. A generation time effect on the rate of molecular evolution in invertebrates. Mol. Biol. Evol. 27, 1173–1180 (2010). PubMed DOI
Wyder, S., Kriventseva, E. V., Schröder, R., Kadowaki, T. & Zdobnov, E. M. Quantification of ortholog losses in insects and vertebrates. Genome Biol. 8, R242 (2007). PubMed DOI PMC
Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011). PubMed DOI
Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. Nature 571, 505–509 (2019). PubMed DOI PMC
Chen, J. et al. A quantitative framework for characterizing the evolutionary history of mammalian gene expression. Genome Res. 29, 53–63 (2019). PubMed DOI PMC
Fukushima, K. & Pollock, D. D. Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution. Nat. Commun. 11, 4459 (2020). PubMed DOI PMC
Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593 (2012). PubMed DOI
Lê Cao, K.-A., Boitard, S. & Besse, P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 12, 253 (2011). PubMed DOI PMC
Burkhardt, P. & Sprecher, S. G. Evolutionary origin of synapses and neurons – bridging the gap. Bioessays 39, 1700024 (2017). DOI
Sebé-Pedrós, A. et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell 173, 1520–1534.e20 (2018). PubMed DOI
Inaba, K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524–538 (2011). PubMed DOI
Daldello, E. M., Luong, X. G., Yang, C.-R., Kuhn, J. & Conti, M. Cyclin B2 is required for progression through meiosis in mouse oocytes. Development 146, dev172734 (2019). PubMed DOI PMC
Li, J., Ouyang, Y.-C., Zhang, C.-H., Qian, W.-P. & Sun, Q.-Y. The cyclin B2/CDK1 complex inhibits separase activity in mouse oocyte meiosis I. Development 146, 648053 (2019). DOI
Zeng, Y. et al. Bi-allelic mutations in MOS cause female infertility characterized by preimplantation embryonic arrest. Hum. Reprod. 37, 612–620 (2022). PubMed DOI
Tay, J., Hodgman, R., Sarkissian, M. & Richter, J. D. Regulated CPEB phosphorylation during meiotic progression suggests a mechanism for temporal control of maternal mRNA translation. Genes Dev. 17, 1457–1462 (2003). PubMed DOI PMC
Gąsiorowski, L. et al. Molecular evidence for a single origin of ultrafiltration-based excretory organs. Curr. Biol. 31, 3629–3638.e2 (2021). PubMed DOI
Thakurela, S. et al. Mapping gene regulatory circuitry of Pax6 during neurogenesis. Cell Discov. 2, 15045 (2016). PubMed DOI PMC
Eckler, M. J. & Chen, B. Fez family transcription factors: controlling neurogenesis and cell fate in the developing mammalian nervous system. Bioessays 36, 788–797 (2014). PubMed DOI PMC
Taylor, M. V. & Hughes, S. M. Mef2 and the skeletal muscle differentiation program. Semin. Cell Dev. Biol. 72, 33–44 (2017). PubMed DOI
Mathiyalagan, N. et al. Meta-analysis of grainyhead-like dependent transcriptional networks: a roadmap for identifying novel conserved genetic pathways. Genes 10, 876 (2019). PubMed DOI PMC
Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659 (2005). PubMed DOI
Roelofs, D. et al. Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol. 18, 57 (2020). PubMed DOI PMC
Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018). PubMed DOI PMC
Oji, A. et al. Tesmin, metallothionein-like 5, is required for spermatogenesis in mice. Biol. Reprod. 102, 975–983 (2020). PubMed DOI PMC
Jiang, J., Benson, E., Bausek, N., Doggett, K. & White-Cooper, H. Tombola, a tesmin/TSO1-family protein, regulates transcriptional activation in the Drosophila male germline and physically interacts with always early. Development 134, 1549–1559 (2007). PubMed DOI
Hines, J. H. Evolutionary origins of the oligodendrocyte cell type and adaptive myelination. Front. Neurosci. 15, 757360 (2021). PubMed DOI PMC
Ramirez, M. D. & Oakley, T. H. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J. Exp. Biol. 218, 1513–1520 (2015). PubMed DOI PMC
Iram, T. et al. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 605, 509–515 (2022). PubMed DOI PMC
Hartenstein, V. & Martinez, P. Structure, development and evolution of the digestive system. Cell Tissue Res. 377, 289–292 (2019). PubMed DOI PMC
Ottaviani, E., Malagoli, D. & Franceschi, C. The evolution of the adipose tissue: a neglected enigma. Gen. Comp. Endocrinol. 174, 1–4 (2011). PubMed DOI
Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. Tissue-specificity of gene expression diverges slowly between orthologs, and rapidly between paralogs. PLoS Comput. Biol. 12, e1005274 (2016). PubMed DOI PMC
Lien, S. et al. The Atlantic salmon genome provides insights into rediploidization. Nature 533, 200–205 (2016). PubMed DOI PMC
Fernández, R. et al. Selection following gene duplication shapes recent genome evolution in the pea aphid Acyrthosiphon pisum. Mol. Biol. Evol. 37, 2601–2615 (2020). PubMed DOI PMC
Farré, D. & Albà, M. M. Heterogeneous patterns of gene-expression diversification in mammalian gene duplicates. Mol. Biol. Evol. 27, 325–335 (2010). PubMed DOI
Clark, J. W. & Donoghue, P. C. J. Constraining the timing of whole genome duplication in plant evolutionary history.Proc. Biol. Sci. 284, 20170912 (2017). PubMed PMC
Macqueen, D. J. & Johnston, I. A. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc. Biol. Sci. 281, 20132881 (2014). PubMed PMC
Donoghue, P. C. J. & Purnell, M. A. Genome duplication, extinction and vertebrate evolution. Trends Ecol. Evol. 20, 312–319 (2005). PubMed DOI
Almudí, I. & Pascual-Anaya, J. in Old Questions and Young Approaches to Animal Evolution (eds Martín-Durán, J. M. & Vellutini, B. C.) 107–132 (Springer, 2019).
Derelle, R., Philippe, H. & Colbourne, J. K. Broccoli: combining phylogenetic and network analyses for orthology assignment. Mol. Biol. Evol. 37, 3389–3396 (2020). PubMed DOI
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). PubMed DOI
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed DOI PMC
Tapial, J. et al. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res. 27, 1759–1768 (2017). PubMed DOI PMC
Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for ’omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017). PubMed DOI PMC
Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J. & Peterson, H. gprofiler2—an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler.F1000Research 9, ELIXIR-709 (2020). PubMed DOI PMC
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011). PubMed DOI PMC
Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022). PubMed DOI
Gramates, L. S. et al. FlyBase: a guided tour of highlighted features. Genetics 220, iyac035 (2022). PubMed DOI PMC
Jin, L. et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat. Commun. 12, 3715 (2021). PubMed DOI PMC
Wang, Z.-Y. et al. Transcriptome and translatome co-evolution in mammals. Nature 588, 642–647 (2020). PubMed DOI PMC
Guschanski, K., Warnefors, M. & Kaessmann, H. The evolution of duplicate gene expression in mammalian organs. Genome Res. 27, 1461–1474 (2017). PubMed DOI PMC
Touceda-Suárez, M. et al. Ancient genomic regulatory blocks are a source for regulatory gene deserts in vertebrates after whole-genome duplications. Mol. Biol. Evol. 37, 2857–2864 (2020). PubMed DOI PMC
Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).
Mantica, F. & Irimia, M. Pervasive evolution of tissue-specificity of ancestral genes differentially shaped vertebrates and insects, V2. Mendeley Data https://doi.org/10.17632/22m3dwhzk6.2 (2023).
fedemantica. bilaterian_GE. GitHub https://github.com/fedemantica/bilaterian_GE (2023).
Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174 (2022). PubMed DOI PMC