Amphioxus functional genomics and the origins of vertebrate gene regulation

. 2018 Dec ; 564 (7734) : 64-70. [epub] 20181121

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30464347

Grantová podpora
MC_UP_1102/1 Medical Research Council - United Kingdom

Odkazy

PubMed 30464347
PubMed Central PMC6292497
DOI 10.1038/s41586-018-0734-6
PII: 10.1038/s41586-018-0734-6
Knihovny.cz E-zdroje

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.

Australian Research Council Centre of Excellence in Plant Energy Biology School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia

Biologie Intégrative des Organismes Marins BIOM Observatoire Océanologique CNRS and Sorbonne Université Banyuls sur Mer France

Biology and Evolution of Marine Organisms Stazione Zoologica Anton Dohrn Napoli Naples Italy

Biomedical Sciences Research Complex School of Biology University of St Andrews St Andrews UK

Center for Autoimmune Genomics and Etiology Divisions of Biomedical Informatics and Developmental Biology Cincinnati Children's Hospital Medical Center Cincinnati OH USA

Centre for Genomic Regulation Barcelona Spain

Centro Andaluz de Biología del Desarrollo CSIC Universidad Pablo de Olavide Junta de Andalucía Seville Spain

CNRS UMR 8197 Paris France

Computational Regulatory Genomics MRC London Institute of Medical Sciences London UK

Department of Genetics Microbiology and Statistics Faculty of Biology and Institut de Biomedicina University of Barcelona Barcelona Spain

Department of Genetics Microbiology and Statistics Faculty of Biology and Institut de Recerca de la Biodiversitat University of Barcelona Barcelona Spain

Department of Molecular Developmental Biology Faculty of Science Radboud Institute for Molecular Life Sciences Radboud University Nijmegen The Netherlands

Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA

Department of Zoology University of Cambridge Cambridge UK

Department of Zoology University of Oxford Oxford UK

Genomics and Epigenetics Division Garvan Institute of Medical Research Sydney New South Wales Australia

Génomique Métabolique Genoscope Institut de biologie François Jacob Commissariat à l'Energie Atomique CNRS Université Evry Université Paris Saclay Evry France

Genoscope Institut de biologie François Jacob Commissariat à l'Energie Atomique Université Paris Saclay Evry France

Harry Perkins Institute of Medical Research Nedlands Western Australia Australia

Inserm U1024 Paris France

INSERM U830 Équipe Labellisée LNCC SIREDO Oncology Centre Institut Curie PSL Research University Paris France

Institut de Biologie de l'ENS IBENS Ecole Normale Supérieure Paris France

Institute of Cellular and Organismic Biology Academia Sinica Taipei Taiwan

Institute of Clinical Sciences Faculty of Medicine Imperial College London London UK

Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic

Interdisciplinary Centre of Marine and Environmental Research Department of Biology University of Porto Porto Portugal

IRD APHM Microbe Evolution PHylogénie Infection IHU Méditerranée Infection and CNRS Aix Marseille University Marseille France

Laboratoire de Biométrie et Biologie Evolutive CNRS and Université Lyon 1 Villeurbanne France

Laboratory for Transcriptome Technology RIKEN Center for Integrative Medical Sciences Yokohama Japan

Molecular Genetics Unit Okinawa Institute of Science and Technology Graduate University Onna son Japan

RIKEN Center for Life Science Technologies Yokohama Japan

Sars International Centre for Marine Molecular Biology University of Bergen Bergen Norway

School of Life Sciences Beijing University of Chinese Medicine Beijing China

School of Medical Sciences Faculty of Biology Medicine and Health University of Manchester Manchester UK

Sorbonne Université CNRS Laboratoire de Biologie du Développement de Villefranche sur Mer Institut de la Mer de Villefranche sur Mer Villefranche sur Mer France

St Vincent's Clinical School Faculty of Medicine University of New South Wales Sydney New South Wales Australia

State Key Laboratory of Biocontrol School of Life Sciences Sun Yat sen University Guangzhou China

The Scottish Oceans Institute Gatty Marine Laboratory University of St Andrews St Andrews UK

UMR 9002 CNRS Institut de Génétique Humaine Université de Montpellier Montpellier France

Universitat Pompeu Fabra Barcelona Spain

Zobrazit více v PubMed

Bertrand S, Escriva H. Evolutionary crossroads in developmental biology: amphioxus. Development. 2011;138:4819–4830. doi: 10.1242/dev.066720. PubMed DOI

Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3:e314. doi: 10.1371/journal.pbio.0030314. PubMed DOI PMC

Putnam NH, et al. The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008;453:1064–1071. doi: 10.1038/nature06967. PubMed DOI

Holland LZ, et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 2008;18:1100–1111. doi: 10.1101/gr.073676.107. PubMed DOI PMC

International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI

Nelson CE, Hersh BM, Carroll SB. The regulatory content of intergenic DNA shapes genome architecture. Genome Biol. 2004;5:R25. doi: 10.1186/gb-2004-5-4-r25. PubMed DOI PMC

Bogdanović O, et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat. Genet. 2016;48:417–426. doi: 10.1038/ng.3522. PubMed DOI PMC

Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P. Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat. Ecol. Evol. 2018;2:152–163. doi: 10.1038/s41559-017-0377-2. PubMed DOI PMC

Reilly SK, et al. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science. 2015;347:1155–1159. doi: 10.1126/science.1260943. PubMed DOI PMC

Villar D, et al. Enhancer evolution across 20 mammalian species. Cell. 2015;160:554–566. doi: 10.1016/j.cell.2015.01.006. PubMed DOI PMC

Vierstra J, et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science. 2014;346:1007–1012. doi: 10.1126/science.1246426. PubMed DOI PMC

Boyle AP, et al. Comparative analysis of regulatory information and circuits across distant species. Nature. 2014;512:453–456. doi: 10.1038/nature13668. PubMed DOI PMC

Gerstein MB, et al. Comparative analysis of the transcriptome across distant species. Nature. 2014;512:445–448. doi: 10.1038/nature13424. PubMed DOI PMC

Hendrich B, Tweedie S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 2003;19:269–277. doi: 10.1016/S0168-9525(03)00080-5. PubMed DOI

Irimia M, et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 2012;22:2356–2367. doi: 10.1101/gr.139725.112. PubMed DOI PMC

Simakov O, et al. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493:526–531. doi: 10.1038/nature11696. PubMed DOI PMC

Wang X, et al. Genome-wide and single-base resolution DNA methylomes of the Pacific oyster Crassostrea gigas provide insight into the evolution of invertebrate CpG methylation. BMC Genomics. 2014;15:1119. doi: 10.1186/1471-2164-15-1119. PubMed DOI PMC

Albalat R, Martí-Solans J, Cañestro C. DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates. Brief. Funct. Genomics. 2012;11:142–155. doi: 10.1093/bfgp/els009. PubMed DOI

Huang S, et al. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nat. Commun. 2014;5:5896. doi: 10.1038/ncomms6896. PubMed DOI PMC

Zhang Y, et al. Nucleation of DNA repair factors by FOXA1 links DNA demethylation to transcriptional pioneering. Nat. Genet. 2016;48:1003–1013. doi: 10.1038/ng.3635. PubMed DOI

Irie N, Kuratani S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2011;2:248. doi: 10.1038/ncomms1248. PubMed DOI PMC

Hu H, et al. Constrained vertebrate evolution by pleiotropic genes. Nat. Ecol. Evol. 2017;1:1722–1730. doi: 10.1038/s41559-017-0318-0. PubMed DOI

Duboule D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development. 1994;1994 Suppl.:135–142. PubMed

Bogdanović O, et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 2012;22:2043–2053. doi: 10.1101/gr.134833.111. PubMed DOI PMC

Yue F, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–364. doi: 10.1038/nature13992. PubMed DOI PMC

McLean CY, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 2010;28:495–501. doi: 10.1038/nbt.1630. PubMed DOI PMC

Force A, et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151:1531–1545. PubMed PMC

Yanai I, et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics. 2005;21:650–659. doi: 10.1093/bioinformatics/bti042. PubMed DOI

Sandve SR, Rohlfs RV, Hvidsten TR. Subfunctionalization versus neofunctionalization after whole-genome duplication. Nat. Genet. 2018;50:908–909. doi: 10.1038/s41588-018-0162-4. PubMed DOI

Fuentes M, et al. Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma lanceolatum) in captivity. J. Exp. Zool. B Mol. Dev. Evol. 2004;302B:384–391. doi: 10.1002/jez.b.20025. PubMed DOI

Fuentes M, et al. Insights into spawning behavior and development of the European amphioxus (Branchiostoma lanceolatum) J. Exp. Zool. B Mol. Dev. Evol. 2007;308B:484–493. doi: 10.1002/jez.b.21179. PubMed DOI

Hirakow R, Kajita N. Electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense: the gastrula. J. Morphol. 1991;207:37–52. doi: 10.1002/jmor.1052070106. PubMed DOI

Hirakow R, Kajita N. Electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense: the neurula and larva. Kaibogaku Zasshi. 1994;69:1–13. PubMed

Luo R, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18. doi: 10.1186/2047-217X-1-18. PubMed DOI PMC

Huang S, et al. HaploMerger: reconstructing allelic relationships for polymorphic diploid genome assemblies. Genome Res. 2012;22:1581–1588. doi: 10.1101/gr.133652.111. PubMed DOI PMC

Grabherr MG, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Haas BJ, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–5666. doi: 10.1093/nar/gkg770. PubMed DOI PMC

Keller O, Kollmar M, Stanke M, Waack S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics. 2011;27:757–763. doi: 10.1093/bioinformatics/btr010. PubMed DOI

Haas BJ, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9:R7. doi: 10.1186/gb-2008-9-1-r7. PubMed DOI PMC

Kim D, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Trapnell C, et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010;28:511–515. doi: 10.1038/nbt.1621. PubMed DOI PMC

Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protocols. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Wang L, et al. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41:e74. doi: 10.1093/nar/gkt006. PubMed DOI PMC

Roth AC, Gonnet GH, Dessimoz C. Algorithm of OMA for large-scale orthology inference. BMC Bioinformatics. 2008;9:518. doi: 10.1186/1471-2105-9-518. PubMed DOI PMC

Altenhoff AM, Gil M, Gonnet GH, Dessimoz C. Inferring hierarchical orthologous groups from orthologous gene pairs. PLoS ONE. 2013;8:e53786. doi: 10.1371/journal.pone.0053786. PubMed DOI PMC

Siepel A, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–1050. doi: 10.1101/gr.3715005. PubMed DOI PMC

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI

Labbé RM, et al. A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells. 2012;30:1734–1745. doi: 10.1002/stem.1144. PubMed DOI PMC

Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation. 2007;2:5–7. doi: 10.6026/97320630002005. PubMed DOI PMC

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559. PubMed DOI PMC

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods. 2013;10:1213–1218. doi: 10.1038/nmeth.2688. PubMed DOI PMC

Fernández-Miñán A, Bessa J, Tena JJ, Gómez-Skarmeta JL. Assay for transposase-accessible chromatin and circularized chromosome conformation capture, two methods to explore the regulatory landscapes of genes in zebrafish. Methods Cell Biol. 2016;135:413–430. doi: 10.1016/bs.mcb.2016.02.008. PubMed DOI

Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS) Genome Biol. 2008;9:R137. doi: 10.1186/gb-2008-9-9-r137. PubMed DOI PMC

Schep AN, et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 2015;25:1757–1770. doi: 10.1101/gr.192294.115. PubMed DOI PMC

Bogdanović O, Fernández-Miñán A, Tena JJ, de la Calle-Mustienes E, Gómez-Skarmeta JL. The developmental epigenomics toolbox: ChIP-seq and MethylCap-seq profiling of early zebrafish embryos. Methods. 2013;62:207–215. doi: 10.1016/j.ymeth.2013.04.011. PubMed DOI

Geeven G, Teunissen H, de Laat W, de Wit E. peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucleic Acids Res. 2018;46:e91. doi: 10.1093/nar/gky443. PubMed DOI PMC

Bogdanović O, Veenstra GJ. Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos. BMC Res. Notes. 2011;4:300. doi: 10.1186/1756-0500-4-300. PubMed DOI PMC

Lister R, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68–73. doi: 10.1038/nature09798. PubMed DOI PMC

Murata M, et al. Detecting expressed genes using CAGE. Methods Mol. Biol. 2014;1164:67–85. doi: 10.1007/978-1-4939-0805-9_7. PubMed DOI

The FANTOM Consortium and the RIKEN PMI and CLST (DGT) A promoter-level mammalian expression atlas. Nature. 2014;507:462–470. doi: 10.1038/nature13182. PubMed DOI PMC

Haberle V, Forrest AR, Hayashizaki Y, Carninci P, Lenhard B. CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res. 2015;43:e51. doi: 10.1093/nar/gkv054. PubMed DOI PMC

Wehrens R, Buydens LMC. Self- and super-organising maps in R: the kohonen package. J. Stat. Softw. 2007;21:1–19. doi: 10.18637/jss.v021.i05. DOI

Gohr, A. & Irimia, M. Matt: Unix tools for alternative splicing analysis. Bioinformatics (2018). PubMed

Weirauch MT, et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158:1431–1443. doi: 10.1016/j.cell.2014.08.009. PubMed DOI PMC

van Heeringen SJ, Veenstra GJ. GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments. Bioinformatics. 2011;27:270–271. doi: 10.1093/bioinformatics/btq636. PubMed DOI PMC

Bessa J, et al. Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev. Dyn. 2009;238:2409–2417. doi: 10.1002/dvdy.22051. PubMed DOI

Gehrke AR, et al. Deep conservation of wrist and digit enhancers in fish. Proc. Natl Acad. Sci. USA. 2015;112:803–808. doi: 10.1073/pnas.1420208112. PubMed DOI PMC

Kawakami K. Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol. 2004;77:201–222. doi: 10.1016/S0091-679X(04)77011-9. PubMed DOI

Somorjai I, Bertrand S, Camasses A, Haguenauer A, Escriva H. Evidence for stasis and not genetic piracy in developmental expression patterns of Branchiostoma lanceolatum and Branchiostoma floridae, two amphioxus species that have evolved independently over the course of 200 Myr. Dev. Genes Evol. 2008;218:703–713. doi: 10.1007/s00427-008-0256-6. PubMed DOI

Tena JJ, et al. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res. 2014;24:1075–1085. doi: 10.1101/gr.163915.113. PubMed DOI PMC

Acemel RD, et al. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat. Genet. 2016;48:336–341. doi: 10.1038/ng.3497. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...