Cell type and regulatory analysis in amphioxus illuminates evolutionary origin of the vertebrate head

. 2024 Oct 14 ; 15 (1) : 8859. [epub] 20241014

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39402029

Grantová podpora
GA20-25377S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 39402029
PubMed Central PMC11473876
DOI 10.1038/s41467-024-52938-7
PII: 10.1038/s41467-024-52938-7
Knihovny.cz E-zdroje

To shed light on the enigmatic origin of the vertebrate head, our study employs an integrated approach that combines single-cell transcriptomics, perturbations in signaling pathways, and cis-regulatory analysis in amphioxus. As a representative of a basal lineage within the chordate phylum, amphioxus retains many characteristics thought to have been present in the common chordate ancestor. Through cell type characterization, we identify the presence of prechordal plate-like, pre-migratory, and migratory neural crest-like cell populations in the developing amphioxus embryo. Functional analysis establishes conserved roles of the Nodal and Hedgehog signaling pathways in prechordal plate-like populations, and of the Wnt signaling pathway in neural crest-like populations' development. Furthermore, our trans-species transgenic experiments highlight similarities in the regulatory environments that drive neural crest-like and prechordal plate-like developmental programs in both vertebrates and amphioxus. Our findings provide evidence that the key features of vertebrate head development can be traced back to the common ancestor of all chordates.

Zobrazit více v PubMed

Schlosser, G. From so simple a beginning - what amphioxus can teach us about placode evolution. Int J. Dev. Biol.61, 633–648 (2017). PubMed

Patthey, C., Schlosser, G. & Shimeld, S. M. The evolutionary history of vertebrate cranial placodes–I: cell type evolution. Dev. Biol.389, 82–97 (2014). PubMed

York, J. R. & McCauley, D. W. The origin and evolution of vertebrate neural crest cells. Open Biol.10, 190285 (2020). PubMed PMC

Yasuoka, Y., Tando, Y., Kubokawa, K. & Taira, M. Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. Zool. Lett.5, 27 (2019). PubMed PMC

Holland, L. Z. & Holland, N. D. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? J. Anat.199, 85–98 (2001). PubMed PMC

Vesque, C. et al. Development of chick axial mesoderm: specification of prechordal mesoderm by anterior endoderm-derived TGFbeta family signalling. Development127, 2795–2809 (2000). PubMed

Hagos, E. G. & Dougan, S. T. Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Dev. Biol.7, 22 (2007). PubMed PMC

Dumortier, J. G., Martin, S., Meyer, D., Rosa, F. M. & David, N. B. Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc. Natl Acad. Sci. USA109, 16945–16950 (2012). PubMed PMC

Gritsman, K., Talbot, W. S. & Schier, A. F. Nodal signaling patterns the organizer. Development127, 921–932 (2000). PubMed

Pera, E. M. & Kessel, M. Patterning of the chick forebrain anlage by the prechordal plate. Development124, 4153–4162 (1997). PubMed

Sagai, T., Amano, T., Maeno, A., Ajima, R. & Shiroishi, T. SHH signaling mediated by a prechordal and brain enhancer controls forebrain organization. Proc. Natl Acad. Sci. USA116, 23636–23642 (2019). PubMed PMC

Kuratani, S. & Adachi, N. What are head cavities? - A history of studies on vertebrate head segmentation. Zool. Sci.33, 213–228, (2016). PubMed

Kirby, M. L. et al. Hensen’s node gives rise to the ventral midline of the foregut: implications for organizing head and heart development. Dev. Biol.253, 175–188 (2003). PubMed

Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science360, eaar3131 (2018). PubMed PMC

Yu, J. K. et al. Axial patterning in cephalochordates and the evolution of the organizer. Nature445, 613–617 (2007). PubMed

Onai, T., Yu, J. K., Blitz, I. L., Cho, K. W. & Holland, L. Z. Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev. Biol.344, 377–389 (2010). PubMed PMC

Kozmikova, I. & Kozmik, Z. Wnt/beta-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer. Elife9, e56817 (2020). PubMed PMC

Machacova, S., Kozmik, Z. & Kozmikova, I. Identification of Nodal-dependent enhancer of amphioxus Chordin sufficient to drive gene expression into the chordate dorsal organizer. Dev. Genes Evol.232, 137–145 (2022). PubMed

Onai, T., Irie, N. & Kuratani, S. The evolutionary origin of the vertebrate body plan: the problem of head segmentation. Annu Rev. Genom. Hum. Genet15, 443–459 (2014). PubMed

Ferran, J. L., Irimia, M. & Puelles, L. Is there a prechordal region and an acroterminal domain in amphioxus? Brain Behav. Evol.96, 334–352 (2022). PubMed

Albuixech-Crespo, B. et al. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol.15, e2001573 (2017). PubMed PMC

Meister, L., Escriva, H. & Bertrand, S. Functions of the FGF signalling pathway in cephalochordates provide insight into the evolution of the prechordal plate. Development149, dev200252 (2022). PubMed PMC

Samaan, G. et al. Foxn3 is essential for craniofacial development in mice and a putative candidate involved in human congenital craniofacial defects. Biochem Biophys. Res Commun.400, 60–65 (2010). PubMed

Williams, R. M. et al. Reconstruction of the global neural crest gene regulatory network in vivo. Dev. Cell51, 255–276.e257 (2019). PubMed PMC

Nassif, A. et al. Transcriptional regulation of jaw osteoblasts: development to pathology. J. Dent. Res101, 859–869 (2022). PubMed PMC

Machon, O., Masek, J., Machonova, O., Krauss, S. & Kozmik, Z. Meis2 is essential for cranial and cardiac neural crest development. BMC Dev. Biol.15, 40 (2015). PubMed PMC

Ray, P. et al. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain159, 1325–1345 (2018). PubMed PMC

Rogers, C., Phillips, J. & Bronner, M. Elk3 is essential for the progression from progenitor to definitive neural crest cell. Dev. Biol.374, 255–263 (2012). PubMed PMC

Hendershot, T. J. et al. Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev. Biol.319, 179–191 (2008). PubMed PMC

Simoes-Costa, M. & Bronner, M. E. Establishing neural crest identity: a gene regulatory recipe. Development142, 242–257 (2015). PubMed PMC

Aoto, K. et al. Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev. Biol.327, 106–120 (2009). PubMed

Schlosser, G. Do vertebrate neural crest and cranial placodes have a common evolutionary origin? Bioessays30, 659–672 (2008). PubMed

Patten, I., Kulesa, P., Shen, M. M., Fraser, S. & Placzek, M. Distinct modes of floor plate induction in the chick embryo. Development130, 4809–4821 (2003). PubMed

Satoh, N. et al. A preliminary single-cell RNA-Seq analysis of embryonic cells that express brachyury in the amphioxus, Branchiostoma Japonicum. Front Cell Dev. Biol.9, 696875 (2021). PubMed PMC

Ma, P. et al. Joint profiling of gene expression and chromatin accessibility during amphioxus development at single-cell resolution. Cell Rep.39, 110979 (2022). PubMed

Heisenberg, C. P. & Tada, M. Zebrafish gastrulation movements: bridging cell and developmental biology. Semin Cell Dev. Biol.13, 471–479 (2002). PubMed

Prummel, K. D. et al. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat. Commun.10, 3857 (2019). PubMed PMC

Pascual-Anaya, J. et al. The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Dev. Biol.375, 182–192 (2013). PubMed

Vermeiren, S., Bellefroid, E. J. & Desiderio, S. Vertebrate sensory ganglia: common and divergent features of the transcriptional programs generating their functional specialization. Front Cell Dev. Biol.8, 587699 (2020). PubMed PMC

Vernon, C. G. & Swanson, G. T. Neto2 assembles with Kainate receptors in DRG neurons during development and modulates neurite outgrowth in adult sensory neurons. J. Neurosci.37, 3352–3363 (2017). PubMed PMC

Haines, B. & Rigby, P. Expression of the Lingo/LERN gene family during mouse embryogenesis. Gene Expr. patterns: GEP8, 79–86 (2008). PubMed

Patthey, C. et al. Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev.11, 3 (2016). PubMed PMC

Shiau, C. E., Lwigale, P. Y., Das, R. M., Wilson, S. A. & Bronner-Fraser, M. Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion. Nat. Neurosci.11, 269–276 (2008). PubMed

Christian, L., Bahudhanapati, H. & Wei, S. Extracellular metalloproteinases in neural crest development and craniofacial morphogenesis. Crit. Rev. Biochem. Mol. Biol.48, 544–560 (2013). PubMed

Hong, C. S. & Saint-Jeannet, J. P. Sox proteins and neural crest development. Semin Cell Dev. Biol.16, 694–703 (2005). PubMed

Uy, B. R., Simoes-Costa, M., Koo, D. E., Sauka-Spengler, T. & Bronner, M. E. Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation. Dev. Biol.397, 282–292 (2015). PubMed PMC

Satoh, G., Wang, Y., Zhang, P. & Satoh, N. Early development of amphioxus nervous system with special reference to segmental cell organization and putative sensory cell precursors: a study based on the expression of pan-neuronal marker gene Hu/elav. J. Exp. Zool.291, 354–364 (2001). PubMed

Kaltenbach, S. L., Yu, J. K. & Holland, N. D. The origin and migration of the earliest-developing sensory neurons in the peripheral nervous system of amphioxus. Evol. Dev.11, 142–151 (2009). PubMed

Benito-Gutierrez, E., Nake, C., Llovera, M., Comella, J. X. & Garcia-Fernandez, J. The single AmphiTrk receptor highlights increased complexity of neurotrophin signalling in vertebrates and suggests an early role in developing sensory neuroepidermal cells. Development132, 2191–2202, (2005). PubMed

Devotta, A., Hong, C.-S. & Saint-Jeannet, J.-P. Dkk2 promotes neural crest specification by activating Wnt/β-catenin signaling in a GSK3β independent manner. eLife7, e34404 (2018). PubMed PMC

Carmona-Fontaine, C., Acuña, G., Ellwanger, K., Niehrs, C. & Mayor, R. Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm. Dev. Biol.309, 208–221 (2007). PubMed

Luo, R., An, M., Arduini, B. L. & Henion, P. D. Specific pan-neural crest expression of zebrafish Crestin throughout embryonic development. Dev. Dyn.220, 169–174 (2001). PubMed

Kaufman, C. K. et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science351, aad2197 (2016). PubMed PMC

Lefebvre, V. The SoxD transcription factors–Sox5, Sox6, and Sox13–are key cell fate modulators. Int J. Biochem Cell Biol.42, 429–432 (2010). PubMed PMC

Soukup, V. et al. The Nodal signaling pathway controls left-right asymmetric development in amphioxus. Evodevo6, 5 (2015). PubMed PMC

Ono, H., Koop, D. & Holland, L. Z. Nodal and Hedgehog synergize in gill slit formation during development of the cephalochordate Branchiostoma floridae. Development145, dev162586 (2018). PubMed

Hu, G., Li, G., Wang, H. & Wang, Y. Hedgehog participates in the establishment of left-right asymmetry during amphioxus development by controlling Cerberus expression. Development144, 4694–4703 (2017). PubMed

Ren, Q. et al. Step-wise evolution of neural patterning by Hedgehog signalling in chordates. Nat. Ecol. Evol.4, 1247–1255 (2020). PubMed

Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature564, 64–70 (2018). PubMed PMC

Kozmikova, I. & Kozmik, Z. Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates. Mar. Genomics24, 159–166 (2015). PubMed

Miller-Bertoglio, V., Fisher, S., Sánchez, A., Mullins, M. & Halpern, M. Differential regulation of chordin expression domains in mutant Zebrafish. Dev. Biol.192, 537–550 (1998). PubMed

Xu, X., He, Y., Sun, L., Ma, S. & Luo, C. Maternal Vsx1 plays an essential role in regulating prechordal mesendoderm and forebrain formation in zebrafish. Dev. Biol.394, 264–276 (2014). PubMed

Mathieu, J., Barth, A., Rosa, F. M., Wilson, S. W. & Peyriéras, N. Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development129, 3055–3065 (2002). PubMed

Wang, H., Holland, P. & Takahashi, T. Gene profiling of head mesoderm in early zebrafish development: insights into the evolution of cranial mesoderm. EvoDevo10, 14 (2019). PubMed PMC

Tarashansky, A. J. et al. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife10, e66747 (2021). PubMed PMC

Goodrich, E. S. Memoirs: Proboscis pores in craniate vertebrates, a suggestion concerning the premandibular somites and hypophysis. Q. J. Microsc. Sci.62, 539–553 (1917).

Kozmik, Z. et al. Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev. Biol.306, 143–159 (2007). PubMed

Glardon, S., Holland, L. Z., Gehring, W. J. & Holland, N. D. Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development125, 2701–2710 (1998). PubMed

Fabian, P. et al. Lineage analysis reveals an endodermal contribution to the vertebrate pituitary. Science370, 463–467 (2020). PubMed PMC

Chowdhury, R. et al. Highly distinct genetic programs for peripheral nervous system formation in chordates. BMC Biol.20, 152 (2022). PubMed PMC

Lacalli, T. C., Gilmour, T. H. J. & Kelly, S. J. The Oral nerve plexus in amphioxus larvae: function, cell types and phylogenetic significance. Proc.: Biol. Sci.266, 1461–1470 (1999).

Schlosser, G. Making senses development of vertebrate cranial placodes. Int Rev. Cell Mol. Biol.283, 129–234 (2010). PubMed

Saxena, A., Peng, B. N. & Bronner, M. E. Sox10-dependent neural crest origin of olfactory microvillous neurons in zebrafish. eLife2, e00336 (2013). PubMed PMC

Katoh, H. et al. The dual origin of the peripheral olfactory system: placode and neural crest. Mol. Brain4, 34 (2011). PubMed PMC

Whitlock, K. A new model for olfactory placode development. Brain. Behav. Evol.64, 126–140 (2004). PubMed

Wagner, E., Stolfi, A., Gi Choi, Y. & Levine, M. Islet is a key determinant of ascidian palp morphogenesis. Development141, 3084–3092 (2014). PubMed PMC

Horie, R. et al. Shared evolutionary origin of vertebrate neural crest and cranial placodes. Nature560, 228–232 (2018). PubMed PMC

Stolfi, A., Ryan, K., Meinertzhagen, I. A. & Christiaen, L. Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature527, 371–374 (2015). PubMed PMC

Steingrímsson, E., Copeland, N. G. & Jenkins, N. A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet38, 365–411 (2004). PubMed

Adameyko, I. et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell139, 366–379 (2009). PubMed

Bozzo, M., Pergner, J., Kozmik, Z. & Kozmikova, I. Novel polyclonal antibodies as a useful tool for expression studies in amphioxus embryos. Int J. Dev. Biol.61, 793–800 (2017). PubMed

Bozzo, M., Candiani, S. & Schubert, M. Whole mount in situ hybridization and immunohistochemistry for studying retinoic acid signaling in developing amphioxus. Methods Enzymol.637, 419–452 (2020). PubMed

Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc.3, 59–69 (2008). PubMed

Bessa, J. et al. Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev. Dyn.238, 2409–2417 (2009). PubMed

Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell7, 133–144 (2004). PubMed

Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol.4, 820–830 (2020). PubMed PMC

Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol.36, 421–427 (2018). PubMed PMC

Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science367, 405–411 (2020). PubMed PMC

Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods19, 159–170 (2022). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...