Cell type and regulatory analysis in amphioxus illuminates evolutionary origin of the vertebrate head
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-25377S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
39402029
PubMed Central
PMC11473876
DOI
10.1038/s41467-024-52938-7
PII: 10.1038/s41467-024-52938-7
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- crista neuralis * metabolismus cytologie MeSH
- hlava * embryologie MeSH
- kopinatci * genetika embryologie MeSH
- obratlovci * genetika MeSH
- proteiny hedgehog metabolismus genetika MeSH
- signální dráha Wnt genetika MeSH
- signální transdukce genetika MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny hedgehog MeSH
To shed light on the enigmatic origin of the vertebrate head, our study employs an integrated approach that combines single-cell transcriptomics, perturbations in signaling pathways, and cis-regulatory analysis in amphioxus. As a representative of a basal lineage within the chordate phylum, amphioxus retains many characteristics thought to have been present in the common chordate ancestor. Through cell type characterization, we identify the presence of prechordal plate-like, pre-migratory, and migratory neural crest-like cell populations in the developing amphioxus embryo. Functional analysis establishes conserved roles of the Nodal and Hedgehog signaling pathways in prechordal plate-like populations, and of the Wnt signaling pathway in neural crest-like populations' development. Furthermore, our trans-species transgenic experiments highlight similarities in the regulatory environments that drive neural crest-like and prechordal plate-like developmental programs in both vertebrates and amphioxus. Our findings provide evidence that the key features of vertebrate head development can be traced back to the common ancestor of all chordates.
Zobrazit více v PubMed
Schlosser, G. From so simple a beginning - what amphioxus can teach us about placode evolution. Int J. Dev. Biol.61, 633–648 (2017). PubMed
Patthey, C., Schlosser, G. & Shimeld, S. M. The evolutionary history of vertebrate cranial placodes–I: cell type evolution. Dev. Biol.389, 82–97 (2014). PubMed
York, J. R. & McCauley, D. W. The origin and evolution of vertebrate neural crest cells. Open Biol.10, 190285 (2020). PubMed PMC
Yasuoka, Y., Tando, Y., Kubokawa, K. & Taira, M. Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. Zool. Lett.5, 27 (2019). PubMed PMC
Holland, L. Z. & Holland, N. D. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? J. Anat.199, 85–98 (2001). PubMed PMC
Vesque, C. et al. Development of chick axial mesoderm: specification of prechordal mesoderm by anterior endoderm-derived TGFbeta family signalling. Development127, 2795–2809 (2000). PubMed
Hagos, E. G. & Dougan, S. T. Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Dev. Biol.7, 22 (2007). PubMed PMC
Dumortier, J. G., Martin, S., Meyer, D., Rosa, F. M. & David, N. B. Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc. Natl Acad. Sci. USA109, 16945–16950 (2012). PubMed PMC
Gritsman, K., Talbot, W. S. & Schier, A. F. Nodal signaling patterns the organizer. Development127, 921–932 (2000). PubMed
Pera, E. M. & Kessel, M. Patterning of the chick forebrain anlage by the prechordal plate. Development124, 4153–4162 (1997). PubMed
Sagai, T., Amano, T., Maeno, A., Ajima, R. & Shiroishi, T. SHH signaling mediated by a prechordal and brain enhancer controls forebrain organization. Proc. Natl Acad. Sci. USA116, 23636–23642 (2019). PubMed PMC
Kuratani, S. & Adachi, N. What are head cavities? - A history of studies on vertebrate head segmentation. Zool. Sci.33, 213–228, (2016). PubMed
Kirby, M. L. et al. Hensen’s node gives rise to the ventral midline of the foregut: implications for organizing head and heart development. Dev. Biol.253, 175–188 (2003). PubMed
Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science360, eaar3131 (2018). PubMed PMC
Yu, J. K. et al. Axial patterning in cephalochordates and the evolution of the organizer. Nature445, 613–617 (2007). PubMed
Onai, T., Yu, J. K., Blitz, I. L., Cho, K. W. & Holland, L. Z. Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev. Biol.344, 377–389 (2010). PubMed PMC
Kozmikova, I. & Kozmik, Z. Wnt/beta-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer. Elife9, e56817 (2020). PubMed PMC
Machacova, S., Kozmik, Z. & Kozmikova, I. Identification of Nodal-dependent enhancer of amphioxus Chordin sufficient to drive gene expression into the chordate dorsal organizer. Dev. Genes Evol.232, 137–145 (2022). PubMed
Onai, T., Irie, N. & Kuratani, S. The evolutionary origin of the vertebrate body plan: the problem of head segmentation. Annu Rev. Genom. Hum. Genet15, 443–459 (2014). PubMed
Ferran, J. L., Irimia, M. & Puelles, L. Is there a prechordal region and an acroterminal domain in amphioxus? Brain Behav. Evol.96, 334–352 (2022). PubMed
Albuixech-Crespo, B. et al. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol.15, e2001573 (2017). PubMed PMC
Meister, L., Escriva, H. & Bertrand, S. Functions of the FGF signalling pathway in cephalochordates provide insight into the evolution of the prechordal plate. Development149, dev200252 (2022). PubMed PMC
Samaan, G. et al. Foxn3 is essential for craniofacial development in mice and a putative candidate involved in human congenital craniofacial defects. Biochem Biophys. Res Commun.400, 60–65 (2010). PubMed
Williams, R. M. et al. Reconstruction of the global neural crest gene regulatory network in vivo. Dev. Cell51, 255–276.e257 (2019). PubMed PMC
Nassif, A. et al. Transcriptional regulation of jaw osteoblasts: development to pathology. J. Dent. Res101, 859–869 (2022). PubMed PMC
Machon, O., Masek, J., Machonova, O., Krauss, S. & Kozmik, Z. Meis2 is essential for cranial and cardiac neural crest development. BMC Dev. Biol.15, 40 (2015). PubMed PMC
Ray, P. et al. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain159, 1325–1345 (2018). PubMed PMC
Rogers, C., Phillips, J. & Bronner, M. Elk3 is essential for the progression from progenitor to definitive neural crest cell. Dev. Biol.374, 255–263 (2012). PubMed PMC
Hendershot, T. J. et al. Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev. Biol.319, 179–191 (2008). PubMed PMC
Simoes-Costa, M. & Bronner, M. E. Establishing neural crest identity: a gene regulatory recipe. Development142, 242–257 (2015). PubMed PMC
Aoto, K. et al. Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev. Biol.327, 106–120 (2009). PubMed
Schlosser, G. Do vertebrate neural crest and cranial placodes have a common evolutionary origin? Bioessays30, 659–672 (2008). PubMed
Patten, I., Kulesa, P., Shen, M. M., Fraser, S. & Placzek, M. Distinct modes of floor plate induction in the chick embryo. Development130, 4809–4821 (2003). PubMed
Satoh, N. et al. A preliminary single-cell RNA-Seq analysis of embryonic cells that express brachyury in the amphioxus, Branchiostoma Japonicum. Front Cell Dev. Biol.9, 696875 (2021). PubMed PMC
Ma, P. et al. Joint profiling of gene expression and chromatin accessibility during amphioxus development at single-cell resolution. Cell Rep.39, 110979 (2022). PubMed
Heisenberg, C. P. & Tada, M. Zebrafish gastrulation movements: bridging cell and developmental biology. Semin Cell Dev. Biol.13, 471–479 (2002). PubMed
Prummel, K. D. et al. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat. Commun.10, 3857 (2019). PubMed PMC
Pascual-Anaya, J. et al. The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Dev. Biol.375, 182–192 (2013). PubMed
Vermeiren, S., Bellefroid, E. J. & Desiderio, S. Vertebrate sensory ganglia: common and divergent features of the transcriptional programs generating their functional specialization. Front Cell Dev. Biol.8, 587699 (2020). PubMed PMC
Vernon, C. G. & Swanson, G. T. Neto2 assembles with Kainate receptors in DRG neurons during development and modulates neurite outgrowth in adult sensory neurons. J. Neurosci.37, 3352–3363 (2017). PubMed PMC
Haines, B. & Rigby, P. Expression of the Lingo/LERN gene family during mouse embryogenesis. Gene Expr. patterns: GEP8, 79–86 (2008). PubMed
Patthey, C. et al. Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev.11, 3 (2016). PubMed PMC
Shiau, C. E., Lwigale, P. Y., Das, R. M., Wilson, S. A. & Bronner-Fraser, M. Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion. Nat. Neurosci.11, 269–276 (2008). PubMed
Christian, L., Bahudhanapati, H. & Wei, S. Extracellular metalloproteinases in neural crest development and craniofacial morphogenesis. Crit. Rev. Biochem. Mol. Biol.48, 544–560 (2013). PubMed
Hong, C. S. & Saint-Jeannet, J. P. Sox proteins and neural crest development. Semin Cell Dev. Biol.16, 694–703 (2005). PubMed
Uy, B. R., Simoes-Costa, M., Koo, D. E., Sauka-Spengler, T. & Bronner, M. E. Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation. Dev. Biol.397, 282–292 (2015). PubMed PMC
Satoh, G., Wang, Y., Zhang, P. & Satoh, N. Early development of amphioxus nervous system with special reference to segmental cell organization and putative sensory cell precursors: a study based on the expression of pan-neuronal marker gene Hu/elav. J. Exp. Zool.291, 354–364 (2001). PubMed
Kaltenbach, S. L., Yu, J. K. & Holland, N. D. The origin and migration of the earliest-developing sensory neurons in the peripheral nervous system of amphioxus. Evol. Dev.11, 142–151 (2009). PubMed
Benito-Gutierrez, E., Nake, C., Llovera, M., Comella, J. X. & Garcia-Fernandez, J. The single AmphiTrk receptor highlights increased complexity of neurotrophin signalling in vertebrates and suggests an early role in developing sensory neuroepidermal cells. Development132, 2191–2202, (2005). PubMed
Devotta, A., Hong, C.-S. & Saint-Jeannet, J.-P. Dkk2 promotes neural crest specification by activating Wnt/β-catenin signaling in a GSK3β independent manner. eLife7, e34404 (2018). PubMed PMC
Carmona-Fontaine, C., Acuña, G., Ellwanger, K., Niehrs, C. & Mayor, R. Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm. Dev. Biol.309, 208–221 (2007). PubMed
Luo, R., An, M., Arduini, B. L. & Henion, P. D. Specific pan-neural crest expression of zebrafish Crestin throughout embryonic development. Dev. Dyn.220, 169–174 (2001). PubMed
Kaufman, C. K. et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science351, aad2197 (2016). PubMed PMC
Lefebvre, V. The SoxD transcription factors–Sox5, Sox6, and Sox13–are key cell fate modulators. Int J. Biochem Cell Biol.42, 429–432 (2010). PubMed PMC
Soukup, V. et al. The Nodal signaling pathway controls left-right asymmetric development in amphioxus. Evodevo6, 5 (2015). PubMed PMC
Ono, H., Koop, D. & Holland, L. Z. Nodal and Hedgehog synergize in gill slit formation during development of the cephalochordate Branchiostoma floridae. Development145, dev162586 (2018). PubMed
Hu, G., Li, G., Wang, H. & Wang, Y. Hedgehog participates in the establishment of left-right asymmetry during amphioxus development by controlling Cerberus expression. Development144, 4694–4703 (2017). PubMed
Ren, Q. et al. Step-wise evolution of neural patterning by Hedgehog signalling in chordates. Nat. Ecol. Evol.4, 1247–1255 (2020). PubMed
Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature564, 64–70 (2018). PubMed PMC
Kozmikova, I. & Kozmik, Z. Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates. Mar. Genomics24, 159–166 (2015). PubMed
Miller-Bertoglio, V., Fisher, S., Sánchez, A., Mullins, M. & Halpern, M. Differential regulation of chordin expression domains in mutant Zebrafish. Dev. Biol.192, 537–550 (1998). PubMed
Xu, X., He, Y., Sun, L., Ma, S. & Luo, C. Maternal Vsx1 plays an essential role in regulating prechordal mesendoderm and forebrain formation in zebrafish. Dev. Biol.394, 264–276 (2014). PubMed
Mathieu, J., Barth, A., Rosa, F. M., Wilson, S. W. & Peyriéras, N. Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development129, 3055–3065 (2002). PubMed
Wang, H., Holland, P. & Takahashi, T. Gene profiling of head mesoderm in early zebrafish development: insights into the evolution of cranial mesoderm. EvoDevo10, 14 (2019). PubMed PMC
Tarashansky, A. J. et al. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife10, e66747 (2021). PubMed PMC
Goodrich, E. S. Memoirs: Proboscis pores in craniate vertebrates, a suggestion concerning the premandibular somites and hypophysis. Q. J. Microsc. Sci.62, 539–553 (1917).
Kozmik, Z. et al. Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev. Biol.306, 143–159 (2007). PubMed
Glardon, S., Holland, L. Z., Gehring, W. J. & Holland, N. D. Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development125, 2701–2710 (1998). PubMed
Fabian, P. et al. Lineage analysis reveals an endodermal contribution to the vertebrate pituitary. Science370, 463–467 (2020). PubMed PMC
Chowdhury, R. et al. Highly distinct genetic programs for peripheral nervous system formation in chordates. BMC Biol.20, 152 (2022). PubMed PMC
Lacalli, T. C., Gilmour, T. H. J. & Kelly, S. J. The Oral nerve plexus in amphioxus larvae: function, cell types and phylogenetic significance. Proc.: Biol. Sci.266, 1461–1470 (1999).
Schlosser, G. Making senses development of vertebrate cranial placodes. Int Rev. Cell Mol. Biol.283, 129–234 (2010). PubMed
Saxena, A., Peng, B. N. & Bronner, M. E. Sox10-dependent neural crest origin of olfactory microvillous neurons in zebrafish. eLife2, e00336 (2013). PubMed PMC
Katoh, H. et al. The dual origin of the peripheral olfactory system: placode and neural crest. Mol. Brain4, 34 (2011). PubMed PMC
Whitlock, K. A new model for olfactory placode development. Brain. Behav. Evol.64, 126–140 (2004). PubMed
Wagner, E., Stolfi, A., Gi Choi, Y. & Levine, M. Islet is a key determinant of ascidian palp morphogenesis. Development141, 3084–3092 (2014). PubMed PMC
Horie, R. et al. Shared evolutionary origin of vertebrate neural crest and cranial placodes. Nature560, 228–232 (2018). PubMed PMC
Stolfi, A., Ryan, K., Meinertzhagen, I. A. & Christiaen, L. Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature527, 371–374 (2015). PubMed PMC
Steingrímsson, E., Copeland, N. G. & Jenkins, N. A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet38, 365–411 (2004). PubMed
Adameyko, I. et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell139, 366–379 (2009). PubMed
Bozzo, M., Pergner, J., Kozmik, Z. & Kozmikova, I. Novel polyclonal antibodies as a useful tool for expression studies in amphioxus embryos. Int J. Dev. Biol.61, 793–800 (2017). PubMed
Bozzo, M., Candiani, S. & Schubert, M. Whole mount in situ hybridization and immunohistochemistry for studying retinoic acid signaling in developing amphioxus. Methods Enzymol.637, 419–452 (2020). PubMed
Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc.3, 59–69 (2008). PubMed
Bessa, J. et al. Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev. Dyn.238, 2409–2417 (2009). PubMed
Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell7, 133–144 (2004). PubMed
Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol.4, 820–830 (2020). PubMed PMC
Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol.36, 421–427 (2018). PubMed PMC
Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science367, 405–411 (2020). PubMed PMC
Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods19, 159–170 (2022). PubMed PMC