Identification of Nodal-dependent enhancer of amphioxus Chordin sufficient to drive gene expression into the chordate dorsal organizer
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36372862
DOI
10.1007/s00427-022-00698-z
PII: 10.1007/s00427-022-00698-z
Knihovny.cz E-zdroje
- Klíčová slova
- Amphioxus, Chordate evolution, Chordin, Enhancer, Gene regulation, Light-sheet microscopy, Nodal, Organizer of gastrulation,
- MeSH
- dánio pruhované genetika metabolismus MeSH
- exprese genu MeSH
- kopinatci * genetika metabolismus MeSH
- transformující růstový faktor beta metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chordin MeSH Prohlížeč
- transformující růstový faktor beta MeSH
The core molecular mechanisms of dorsal organizer formation during gastrulation are highly conserved within the chordate lineage. One of the key characteristics is that Nodal signaling is required for the organizer-specific gene expression. This feature appears to be ancestral, as evidenced by the presence in the most basally divergent chordate amphioxus. To provide a better understanding of the evolution of organizer-specific gene regulation in chordates, we analyzed the cis-regulatory sequence of amphioxus Chordin in the context of the vertebrate embryo. First, we generated stable zebrafish transgenic lines, and by using light-sheet fluorescent microscopy, characterized in detail the expression pattern of GFP driven by the cis-regulatory sequences of amphioxus Chordin. Next, we performed a 5'deletion analysis and identified an enhancer sufficient to drive the expression of the reporter gene into a chordate dorsal organizer. Finally, we found that the identified enhancer element strongly depends on Nodal signaling, which is consistent with the well-established role of this pathway in the regulation of the expression of dorsal organizer-specific genes across chordates. The enhancer identified in our study may represent a suitable simple system to study the interplay of the evolutionarily conserved regulatory mechanisms operating during early chordate development.
Zobrazit více v PubMed
Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183 PubMed DOI
Bessa J, Tena JJ, de la Calle-Mustienes E, Fernandez-Minan A, Naranjo S, Fernandez A, Montoliu L, Akalin A, Lenhard B, Casares F, Gomez-Skarmeta JL (2009) Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev Dyn 238:2409–2417 PubMed DOI
Cannavo E, Khoueiry P, Garfield DA, Geeleher P, Zichner T, Gustafson EH, Ciglar L, Korbel JO, Furlong EE (2016) Shadow enhancers are pervasive features of developmental regulatory networks. Curr Biol 26:38–51 PubMed DOI PMC
DaCosta Byfield S, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65(3):744–52. https://doi.org/10.1124/mol.65.3.744 .
Demagny H, Araki T, De Robertis EM (2014) The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-beta signaling. Cell Rep 9:688–700 PubMed DOI
Hagos EG, Dougan ST (2007) Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Dev Biol 7:22 PubMed DOI PMC
Houston DW (2017) Vertebrate axial patterning: from egg to asymmetry. Adv Exp Med Biol 953:209–306 PubMed DOI PMC
Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121:3651–3662 PubMed DOI
Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144 PubMed DOI
Kozmikova I, Kozmik Z (2015) Gene regulation in amphioxus: an insight from transgenic studies in amphioxus and vertebrates. Mar Genomics 24(Pt 2):159–166 PubMed DOI
Kozmikova I, Yu JK (2017) Dorsal-ventral patterning in amphioxus: current understanding, unresolved issues, and future directions. Int J Dev Biol 61:601–610 PubMed DOI
Kozmikova I, Smolikova J, Vlcek C, Kozmik Z (2011) Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. PLoS One 6:e14650 PubMed DOI PMC
Kozmikova I, Candiani S, Fabian P, Gurska D, Kozmik Z (2013) Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates. Dev Biol 382:538–554 PubMed DOI
Kozmikova I, Kozmik Z (2020) Wnt/beta-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer. Elife 9:e56817
Kumar V, Umair Z, Kumar S, Lee U, Kim J (2021) Smad2 and Smad3 differentially modulate chordin transcription via direct binding on the distal elements in gastrula Xenopus embryos. Biochem Biophys Res Commun 559:168–175 PubMed DOI
Kuroda H, Wessely O, De Robertis EM (2004) Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol 2:E92 PubMed DOI PMC
Le Petillon Y, Luxardi G, Scerbo P, Cibois M, Leon A, Subirana L, Irimia M, Kodjabachian L, Escriva H, Bertrand S (2017) Nodal/activin pathway is a conserved neural induction signal in chordates. Nat Ecol Evol 1:1192–1200 PubMed DOI PMC
Marletaz F, Firbas PN, Maeso I, Tena JJ, Bogdanovic O, Perry M, Wyatt CDR, de la Calle-Mustienes E, Bertrand S, Burguera D, Acemel RD, van Heeringen SJ, Naranjo S, Herrera-Ubeda C, Skvortsova K, Jimenez-Gancedo S, Aldea D, Marquez Y, Buono L, Kozmikova I, Permanyer J, Louis A, Albuixech-Crespo B, Le Petillon Y, Leon A, Subirana L, Balwierz PJ, Duckett PE, Farahani E, Aury JM, Mangenot S, Wincker P, Albalat R, Benito-Gutierrez E, Canestro C, Castro F, D’Aniello S, Ferrier DEK, Huang S, Laudet V, Marais GAB, Pontarotti P, Schubert M, Seitz H, Somorjai I, Takahashi T, Mirabeau O, Xu A, Yu JK, Carninci P, Martinez-Morales JR, Crollius HR, Kozmik Z, Weirauch MT, Garcia-Fernandez J, Lister R, Lenhard B, Holland PWH, Escriva H, Gomez-Skarmeta JL, Irimia M (2018) Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564:64–70 PubMed DOI PMC
Miller-Bertoglio VE, Fisher S, Sanchez A, Mullins MC, Halpern ME (1997) Differential regulation of chordin expression domains in mutant zebrafish. Dev Biol 192:537–550 PubMed DOI
Minguillon C, Gibson-Brown JJ, Logan MP (2009) Tbx4/5 gene duplication and the origin of vertebrate paired appendages. Proc Natl Acad Sci USA 106:21726–21730 PubMed DOI PMC
Morov AR, Ukizintambara T, Sabirov RM, Yasui K (2016) Acquisition of the dorsal structures in chordate amphioxus. Open Biol 6:160062
Onai T, Yu JK, Blitz IL, Cho KW, Holland LZ (2010) Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 344:377–389 PubMed DOI PMC
Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790 PubMed DOI PMC
Scott IC, Blitz IL, Pappano WN, Imamura Y, Clark TG, Steiglitz BM, Thomas CL, Maas SA, Takahara K, Cho KW, Greenspan DS (1999) Mammalian BMP-1/Tolloid-related metalloproteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. Dev Biol 213:283–300 PubMed DOI
Shi C, Huang J, Chen S, Li G, Wang Y (2018) Generation of two transgenic amphioxus lines using the Tol2 transposon system. J Genet Genomics 45:513–516 PubMed DOI
Streit A, Lee KJ, Woo I, Roberts C, Jessell TM, Stern CD (1998) Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125:507–519 PubMed DOI
Tam PP, Behringer RR (1997) Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68:3–25 PubMed DOI
Van Otterloo E, Li W, Garnett A, Cattell M, Medeiros DM, Cornell RA (2012) Novel Tfap2-mediated control of soxE expression facilitated the evolutionary emergence of the neural crest. Development 139:720–730 PubMed DOI PMC
Yasuoka Y (2020) Enhancer evolution in chordates: lessons from functional analyses of cephalochordate cis-regulatory modules. Dev Growth Differ 62:279–300 PubMed DOI
Yasuoka Y, Tando Y, Kubokawa K, Taira M (2019) Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. Zoological Lett 5:27 PubMed DOI PMC
Yoshida M, Kajikawa E, Kurokawa D, Noro M, Iwai T, Yonemura S, Kobayashi K, Kiyonari H, Aizawa S (2016) Conserved and divergent expression pat- terns of markers of axial development in reptilian embryos: Chinese soft-shell turtle and Madagascar ground gecko. Dev Biol 415:122–142
Yu JK, Satou Y, Holland ND, Shin IT, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ (2007) Axial patterning in cephalochordates and the evolution of the organizer. Nature 445:613–617 PubMed DOI
Yu JK, Meulemans D, McKeown SJ, Bronner-Fraser M (2008) Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res 18:1127–1132 PubMed DOI PMC