Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21304903
PubMed Central
PMC3033397
DOI
10.1371/journal.pone.0014650
Knihovny.cz E-zdroje
- MeSH
- 5' nepřekládaná oblast MeSH
- Chordata genetika MeSH
- dánio pruhované embryologie genetika MeSH
- embryo nesavčí MeSH
- fylogeneze MeSH
- genetická variace * genetika fyziologie MeSH
- genové regulační sítě * MeSH
- homeodoménové proteiny genetika MeSH
- konzervovaná sekvence * genetika MeSH
- kultivované buňky MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- Oryzias embryologie genetika MeSH
- protein goosecoid genetika MeSH
- rozvržení tělního plánu genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie aminokyselin MeSH
- vývojová regulace genové exprese MeSH
- Xenopus laevis embryologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- homeodoménové proteiny MeSH
- protein goosecoid MeSH
- Vent protein, Amphioxus MeSH Prohlížeč
Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps) and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.
Zobrazit více v PubMed
De Robertis EM, Larrain J, Oelgeschlager M, Wessely O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat Rev Genet. 2000;1:171–181. PubMed PMC
Yu JK, Satou Y, Holland ND, Shin IT, Kohara Y, et al. Axial patterning in cephalochordates and the evolution of the organizer. Nature. 2007;445:613–617. PubMed
Kozmik Z, Holland LZ, Schubert M, Lacalli TC, Kreslova J, et al. Characterization of Amphioxus AmphiVent, an evolutionarily conserved marker for chordate ventral mesoderm. Genesis. 2001;29:172–179. PubMed
Imai Y, Gates MA, Melby AE, Kimelman D, Schier AF, et al. The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish. Development. 2001;128:2407–2420. PubMed
Schmidt JE, von Dassow G, Kimelman D. Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development. 1996;122:1711–1721. PubMed
Trindade M, Tada M, Smith JC. DNA-binding specificity and embryological function of Xom (Xvent-2). Dev Biol. 1999;216:442–456. PubMed
Gawantka V, Delius H, Hirschfeld K, Blumenstock C, Niehrs C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. Embo J. 1995;14:6268–6279. PubMed PMC
Holland LZ, Holland ND. A revised map for amphioxus and the evolution of axial patterning in chordates. Integrative and Comparative Biology. 2007;47:360–372. PubMed
Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, et al. The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm. Development. 1996;122:3045–3053. PubMed
Luke GN, Castro LF, McLay K, Bird C, Coulson A, et al. Dispersal of NK homeobox gene clusters in amphioxus and humans. Proc Natl Acad Sci U S A. 2003;100:5292–5295. PubMed PMC
Onichtchouk D, Glinka A, Niehrs C. Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development. 1998;125:1447–1456. PubMed
Henningfeld KA, Rastegar S, Adler G, Knochel W. Smad1 and Smad4 are components of the bone morphogenetic protein-4 (BMP-4)-induced transcription complex of the Xvent-2B promoter. J Biol Chem. 2000;275:21827–21835. PubMed
Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell. 2000;100:229–240. PubMed
Ramel MC, Lekven AC. Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development. 2004;131:3991–4000. PubMed
Friedle H, Knochel W. Cooperative interaction of Xvent-2 and GATA-2 in the activation of the ventral homeobox gene Xvent-1B. J Biol Chem. 2002;277:23872–23881. PubMed
Karaulanov E, Knochel W, Niehrs C. Transcriptional regulation of BMP4 synexpression in transgenic Xenopus. EMBO J. 2004;23:844–856. PubMed PMC
Holland LZ, Panfilio KA, Chastain R, Schubert M, Holland ND. Nuclear beta-catenin promotes non-neural ectoderm and posterior cell fates in amphioxus embryos. Dev Dyn. 2005;233:1430–1443. PubMed
Sander V, Reversade B, De Robertis EM. The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J. 2007;26:2955–2965. PubMed PMC
Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells. 2002;7:1191–1204. PubMed
Moren A, Itoh S, Moustakas A, Dijke P, Heldin CH. Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene. 2000;19:4396–4404. PubMed
Monteiro RM, de Sousa Lopes SM, Korchynskyi O, ten Dijke P, Mummery CL. Spatio-temporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins. J Cell Sci. 2004;117:4653–4663. PubMed
Fujimura N, Vacik T, Machon O, Vlcek C, Scalabrin S, et al. Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5. J Biol Chem. 2007;282:1225–1237. PubMed
Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, et al. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol. 2003;10:1255–1266. PubMed
Onai T, Lin HC, Schubert M, Koop D, Osborne PW, et al. Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Dev Biol. 2009;332:223–233. PubMed
Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998;17:1371–1384. PubMed PMC
Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol. 2002;22:1184–1193. PubMed PMC
Jho EH, Zhang T, Domon C, Joo CK, Freund JN, et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002;22:1172–1183. PubMed PMC
Yu JK, Holland ND, Holland LZ. An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution. Dev Dyn. 2002;225:289–297. PubMed
Friedle H, Rastegar S, Paul H, Kaufmann E, Knochel W. Xvent-1 mediates BMP-4-induced suppression of the dorsal-lip-specific early response gene XFD-1′ in Xenopus embryos. EMBO J. 1998;17:2298–2307. PubMed PMC
Shimada A, Yabusaki M, Niwa H, Yokoi H, Hatta K, et al. Maternal-zygotic medaka mutants for fgfr1 reveal its essential role in the migration of the axial mesoderm but not the lateral mesoderm. Development. 2008;135:281–290. PubMed
Herpin A, Rohr S, Riedel D, Kluever N, Raz E, et al. Specification of primordial germ cells in medaka (Oryzias latipes). BMC Dev Biol. 2007;7:3. PubMed PMC
Schuler-Metz A, Knochel S, Kaufmann E, Knochel W. The homeodomain transcription factor Xvent-2 mediates autocatalytic regulation of BMP-4 expression in Xenopus embryos. J Biol Chem. 2000;275:34365–34374. PubMed
Lopez-Rios J, Tessmar K, Loosli F, Wittbrodt J, Bovolenta P. Six3 and Six6 activity is modulated by members of the groucho family. Development. 2003;130:185–195. PubMed
Kobayashi M, Nishikawa K, Suzuki T, Yamamoto M. The homeobox protein Six3 interacts with the Groucho corepressor and acts as a transcriptional repressor in eye and forebrain formation. Dev Biol. 2001;232:315–326. PubMed
Buscarlet M, Stifani S. The ‘Marx’ of Groucho on development and disease. Trends Cell Biol. 2007;17:353–361. PubMed
Agoston Z, Schulte D. Meis2 competes with the Groucho co-repressor Tle4 for binding to Otx2 and specifies tectal fate without induction of a secondary midbrain-hindbrain boundary organizer. Development. 2009;136:3311–3322. PubMed
Larder R, Mellon PL. Otx2 induction of the gonadotropin-releasing hormone promoter is modulated by direct interactions with Grg co-repressors. J Biol Chem. 2009;284:16966–16978. PubMed PMC
Czerny T, Busslinger M. DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol Cell Biol. 1995;15:2858–2871. PubMed PMC
Wilson DS, Guenther B, Desplan C, Kuriyan J. High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell. 1995;82:709–719. PubMed
Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C. Cooperative dimerization of paired class homeo domains on DNA. Genes Dev. 1993;7:2120–2134. PubMed
Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, et al. Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell. 2008;133:1266–1276. PubMed PMC
Wolberger C. Homeodomain interactions. Curr Opin Struct Biol. 1996;6:62–68. PubMed
Bruun JA, Thomassen EI, Kristiansen K, Tylden G, Holm T, et al. The third helix of the homeodomain of paired class homeodomain proteins acts as a recognition helix both for DNA and protein interactions. Nucleic Acids Res. 2005;33:2661–2675. PubMed PMC
Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol. 2009;7:e1000248. PubMed PMC
Moretti PA, Davidson AJ, Baker E, Lilley B, Zon LI, et al. Molecular cloning of a human Vent-like homeobox gene. Genomics. 2001;76:21–29. PubMed
Melby AE, Beach C, Mullins M, Kimelman D. Patterning the early zebrafish by the opposing actions of bozozok and vox/vent. Dev Biol. 2000;224:275–285. PubMed
Gao H, Wu B, Giese R, Zhu Z. Xom interacts with and stimulates transcriptional activity of LEF1/TCFs: implications for ventral cell fate determination during vertebrate embryogenesis. Cell Res. 2007;17:345–356. PubMed
Gao H, Le Y, Wu X, Silberstein LE, Giese RW, et al. VentX, a novel lymphoid-enhancing factor/T-cell factor-associated transcription repressor, is a putative tumor suppressor. Cancer Res. 2010;70:202–211. PubMed
Dale L, Howes G, Price BM, Smith JC. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development. 1992;115:573–585. PubMed
von Bubnoff A, Peiffer DA, Blitz IL, Hayata T, Ogata S, et al. Phylogenetic footprinting and genome scanning identify vertebrate BMP response elements and new target genes. Dev Biol. 2005;281:210–226. PubMed
Barkai N, Ben-Zvi D. ‘Big frog, small frog’--maintaining proportions in embryonic development: delivered on 2 July 2008 at the 33rd FEBS Congress in Athens, Greece. FEBS J. 2009;276:1196–1207. PubMed
Plouhinec JL, De Robertis EM. Systems Biology of the Self-regulating Morphogenetic Gradient of the Xenopus Gastrula. Cold Spring Harb Perspect Biol. 2009;1:a001701. PubMed PMC
De Robertis EM, Kuroda H. Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol. 2004;20:285–308. PubMed PMC
Schneider S, Steinbeisser H, Warga RM, Hausen P. Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev. 1996;57:191–198. PubMed
Ramel MC, Buckles GR, Baker KD, Lekven AC. WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev Biol. 2005;287:237–248. PubMed
Hoppler S, Moon RT. BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech Dev. 1998;71:119–129. PubMed
Morkel M, Huelsken J, Wakamiya M, Ding J, van de Wetering M, et al. Beta-catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development. 2003;130:6283–6294. PubMed
Kawahara A, Wilm T, Solnica-Krezel L, Dawid IB. Functional interaction of vega2 and goosecoid homeobox genes in zebrafish. Genesis. 2000;28:58–67. PubMed
Schubert M, Holland LZ, Panopoulou GD, Lehrach H, Holland ND. Characterization of amphioxus AmphiWnt8: insights into the evolution of patterning of the embryonic dorsoventral axis. Evol Dev. 2000;2:85–92. PubMed
Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body axis. Cell. 2009;139:1056–1068. PubMed
Brown CT, Rust AG, Clarke PJ, Pan Z, Schilstra MJ, et al. New computational approaches for analysis of cis-regulatory networks. Dev Biol. 2002;246:86–102. PubMed
Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997;275:1784–1787. PubMed
Rembold M, Lahiri K, Foulkes NS, Wittbrodt J. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc. 2006;1:1133–1139. PubMed
Yamamoto T. Medaka (Killifish) Biology and Strains Tokyo: Keigaku Publishing Company; 1975.
Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer