Meis2 is essential for cranial and cardiac neural crest development
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26545946
PubMed Central
PMC4636814
DOI
10.1186/s12861-015-0093-6
PII: 10.1186/s12861-015-0093-6
Knihovny.cz E-zdroje
- MeSH
- chrupavka abnormality embryologie MeSH
- crista neuralis embryologie metabolismus MeSH
- forkhead transkripční faktory biosyntéza genetika MeSH
- hlavové nervy embryologie MeSH
- homeodoménové proteiny genetika MeSH
- krvácení genetika MeSH
- lebka embryologie inervace MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- represorové proteiny biosyntéza genetika MeSH
- srdce embryologie MeSH
- transkripční faktor SOX9 biosyntéza genetika MeSH
- vrozené srdeční vady embryologie genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- forkhead transkripční faktory MeSH
- Foxd3 protein, mouse MeSH Prohlížeč
- homeodoménové proteiny MeSH
- Mrg1 protein, mouse MeSH Prohlížeč
- represorové proteiny MeSH
- Sox9 protein, mouse MeSH Prohlížeč
- transkripční faktor SOX9 MeSH
BACKGROUND: TALE-class homeodomain transcription factors Meis and Pbx play important roles in formation of the embryonic brain, eye, heart, cartilage or hematopoiesis. Loss-of-function studies of Pbx1, 2 and 3 and Meis1 documented specific functions in embryogenesis, however, functional studies of Meis2 in mouse are still missing. We have generated a conditional allele of Meis2 in mice and shown that systemic inactivation of the Meis2 gene results in lethality by the embryonic day 14 that is accompanied with hemorrhaging. RESULTS: We show that neural crest cells express Meis2 and Meis2-defficient embryos display defects in tissues that are derived from the neural crest, such as an abnormal heart outflow tract with the persistent truncus arteriosus and abnormal cranial nerves. The importance of Meis2 for neural crest cells is further confirmed by means of conditional inactivation of Meis2 using crest-specific AP2α-IRES-Cre mouse. Conditional mutants display perturbed development of the craniofacial skeleton with severe anomalies in cranial bones and cartilages, heart and cranial nerve abnormalities. CONCLUSIONS: Meis2-null mice are embryonic lethal. Our results reveal a critical role of Meis2 during cranial and cardiac neural crest cells development in mouse.
Institute of Molecular Genetics The Czech Academy of Sciences 14200 Praha Czech Republic
Unit for Cell Signaling Oslo University Hospital N 0349 Oslo Norway
Zobrazit více v PubMed
Bronner ME, LeDouarin NM. Development and evolution of the neural crest: an overview. Dev Biol. 2012;366(1):2–9. doi: 10.1016/j.ydbio.2011.12.042. PubMed DOI PMC
Dupin E, Sommer L. Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol. 2012;366(1):83–95. doi: 10.1016/j.ydbio.2012.02.035. PubMed DOI
Sauka-Spengler T, Bronner-Fraser M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol. 2008;9(7):557–68. doi: 10.1038/nrm2428. PubMed DOI
Stuhlmiller TJ, Garcia-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci. 2012;69(22):3715–37. doi: 10.1007/s00018-012-0991-8. PubMed DOI PMC
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 2010;137(16):2605–21. doi: 10.1242/dev.040048. PubMed DOI
Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci. 2003;4(10):806–18. doi: 10.1038/nrn1221. PubMed DOI
Kirby ML, Hutson MR. Factors controlling cardiac neural crest cell migration. Cell Adh Migr. 2010;4(4):609–21. doi: 10.4161/cam.4.4.13489. PubMed DOI PMC
Lee RT, Nagai H, Nakaya Y, Sheng G, Trainor PA, Weston JA, et al. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development. 2013;140(24):4890–902. doi: 10.1242/dev.094680. PubMed DOI PMC
Nakamura T, Jenkins NA, Copeland NG. Identification of a new family of Pbx-related homeobox genes. Oncogene. 1996;13(10):2235–42. PubMed
Jacobs Y, Schnabel CA, Cleary ML. Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell Biol. 1999;19(7):5134–42. doi: 10.1128/MCB.19.7.5134. PubMed DOI PMC
Shanmugam K, Green NC, Rambaldi I, Saragovi HU, Featherstone MS. PBX and MEIS as non-DNA-binding partners in trimeric complexes with HOX proteins. Mol Cell Biol. 1999;19(11):7577–88. doi: 10.1128/MCB.19.11.7577. PubMed DOI PMC
Knoepfler PS, Bergstrom DA, Uetsuki T, Dac-Korytko I, Sun YH, Wright WE, et al. A conserved motif N-terminal to the DNA-binding domains of myogenic bHLH transcription factors mediates cooperative DNA binding with pbx-Meis1/Prep1. Nucleic Acids Res. 1999;27(18):3752–61. doi: 10.1093/nar/27.18.3752. PubMed DOI PMC
Mercader N, Leonardo E, Azpiazu N, Serrano A, Morata G, Martinez C, et al. Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature. 1999;402(6760):425–29. doi: 10.1038/46580. PubMed DOI
Capdevila J, Tsukui T, Rodriquez EC, Zappavigna V, Izpisua Belmonte JC. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin. Mol Cell. 1999;4(5):839–49. doi: 10.1016/S1097-2765(00)80393-7. PubMed DOI
Stankunas K, Shang C, Twu KY, Kao SC, Jenkins NA, Copeland NG, et al. Pbx/Meis deficiencies demonstrate multigenetic origins of congenital heart disease. Circ Res. 2008;103(7):702–09. doi: 10.1161/CIRCRESAHA.108.175489. PubMed DOI PMC
Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell. 2012;151(1):221–32. doi: 10.1016/j.cell.2012.08.027. PubMed DOI PMC
Zhang X, Friedman A, Heaney S, Purcell P, Maas RL. Meis homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis. Genes Dev. 2002;16(16):2097–107. doi: 10.1101/gad.1007602. PubMed DOI PMC
Zhang X, Rowan S, Yue Y, Heaney S, Pan Y, Brendolan A, et al. Pax6 is regulated by Meis and Pbx homeoproteins during pancreatic development. Dev Biol. 2006;300(2):748–57. doi: 10.1016/j.ydbio.2006.06.030. PubMed DOI
Choe SK, Vlachakis N, Sagerstrom CG. Meis family proteins are required for hindbrain development in the zebrafish. Development. 2002;129(3):585–95. PubMed
Vlachakis N, Choe SK, Sagerstrom CG. Meis3 synergizes with Pbx4 and Hoxb1b in promoting hindbrain fates in the zebrafish. Development. 2001;128(8):1299–312. PubMed
Waskiewicz AJ, Rikhof HA, Hernandez RE, Moens CB. Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning. Development. 2001;128(21):4139–51. PubMed
Agoston Z, Schulte D. Meis2 competes with the Groucho co-repressor Tle4 for binding to Otx2 and specifies tectal fate without induction of a secondary midbrain-hindbrain boundary organizer. Development. 2009;136(19):3311–22. doi: 10.1242/dev.037770. PubMed DOI
Choe SK, Lu P, Nakamura M, Lee J, Sagerstrom CG. Meis cofactors control HDAC and CBP accessibility at Hox-regulated promoters during zebrafish embryogenesis. Dev Cell. 2009;17(4):561–67. doi: 10.1016/j.devcel.2009.08.007. PubMed DOI PMC
Ladam F, Sagerstrom CG. Hox regulation of transcription: more complex(es) Dev Dyn. 2014;243(1):4–15. doi: 10.1002/dvdy.23997. PubMed DOI PMC
Azcoitia V, Aracil M, Martinez A, Torres M. The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev Biol. 2005;280(2):307–20. doi: 10.1016/j.ydbio.2005.01.004. PubMed DOI
Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM, et al. Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J. 2004;23(2):450–59. doi: 10.1038/sj.emboj.7600038. PubMed DOI PMC
Heine P, Dohle E, Bumsted-O'Brien K, Engelkamp D, Schulte D. Evidence for an evolutionary conserved role of homothorax/Meis1/2 during vertebrate retina development. Development. 2008;135(5):805–11. doi: 10.1242/dev.012088. PubMed DOI
Melvin VS, Feng W, Hernandez-Lagunas L, Artinger KB, Williams T. A morpholino-based screen to identify novel genes involved in craniofacial morphogenesis. Dev Dyn. 2013;242(7):817–31. doi: 10.1002/dvdy.23969. PubMed DOI PMC
DeLaughter DM, Christodoulou DC, Robinson JY, Seidman CE, Baldwin HS, Seidman JG, et al. Spatial transcriptional profile of the chick and mouse endocardial cushions identify novel regulators of endocardial EMT in vitro. J Mol Cell Cardiol. 2013;59:196–204. doi: 10.1016/j.yjmcc.2013.03.016. PubMed DOI PMC
Erdogan F, Ullmann R, Chen W, Schubert M, Adolph S, Hultschig C, et al. Characterization of a 5.3 Mb deletion in 15q14 by comparative genomic hybridization using a whole genome “tiling path” BAC array in a girl with heart defect, cleft palate, and developmental delay. Am J Med Genet A. 2007;143(2):172–78. doi: 10.1002/ajmg.a.31541. PubMed DOI
Johansson S, Berland S, Gradek GA, Bongers E, de LN, Pfundt R, et al. Haploinsufficiency of MEIS2 is associated with orofacial clefting and learning disability. Am J Med Genet A. 2014;164A(7):1622–6. doi: 10.1002/ajmg.a.36498. PubMed DOI
Crowley MA, Conlin LK, Zackai EH, Deardorff MA, Thiel BD, Spinner NB. Further evidence for the possible role of MEIS2 in the development of cleft palate and cardiac septum. Am J Med Genet A. 2010;152A(5):1326–27. doi: 10.1002/ajmg.a.33375. PubMed DOI
Louw JJ, Corveleyn A, Jia Y, Hens G, Gewillig M, Devriendt K. MEIS2 involvement in cardiac development, cleft palate, and intellectual disability. Am J Med Genet A. 2015;167A(5):1142–6. doi: 10.1002/ajmg.a.36989. PubMed DOI
Cai M, Langer EM, Gill JG, Satpathy AT, Albring JC, KC W, et al. Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation. Blood. 2012;120(2):335–46. doi: 10.1182/blood-2012-01-403139. PubMed DOI PMC
Rinon A, Lazar S, Marshall H, Buchmann-Moller S, Neufeld A, Elhanany-Tamir H, et al. Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development. 2007;134(17):3065–75. doi: 10.1242/dev.002501. PubMed DOI
Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell PJ. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature. 1996;381(6579):235–38. doi: 10.1038/381235a0. PubMed DOI
Zhang J, Hagopian-Donaldson S, Serbedzija G, Elsemore J, Plehn-Dujowich D, McMahon AP, et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature. 1996;381(6579):238–41. doi: 10.1038/381238a0. PubMed DOI
Cecconi F, Proetzel G, varez-Bolado G, Jay D, Gruss P. Expression of Meis2, a Knotted-related murine homeobox gene, indicates a role in the differentiation of the forebrain and the somitic mesoderm. Dev Dyn. 1997;210(2):184–90. doi: 10.1002/(SICI)1097-0177(199710)210:2<184::AID-AJA10>3.0.CO;2-E. PubMed DOI
Macatee TL, Hammond BP, Arenkiel BR, Francis L, Frank DU, Moon AM. Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development. Development. 2003;130(25):6361–74. doi: 10.1242/dev.00850. PubMed DOI PMC
Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21(1):70–71. doi: 10.1038/5007. PubMed DOI
Hatou S, Yoshida S, Higa K, Miyashita H, Inagaki E, Okano H, et al. Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling. Stem Cells Dev. 2013;22(5):828–39. doi: 10.1089/scd.2012.0286. PubMed DOI
Yoshida S, Shimmura S, Nagoshi N, Fukuda K, Matsuzaki Y, Okano H, et al. Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells. 2006;24(12):2714–22. doi: 10.1634/stemcells.2006-0156. PubMed DOI
Ittner LM, Wurdak H, Schwerdtfeger K, Kunz T, Ille F, Leveen P, et al. Compound developmental eye disorders following inactivation of TGFbeta signaling in neural-crest stem cells. J Biol. 2005;4(3):11. doi: 10.1186/jbiol29. PubMed DOI PMC
Olaopa M, Zhou HM, Snider P, Wang J, Schwartz RJ, Moon AM, et al. Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Dev Biol. 2011;356(2):308–22. doi: 10.1016/j.ydbio.2011.05.583. PubMed DOI PMC
Chang CP, Stankunas K, Shang C, Kao SC, Twu KY, Cleary ML. Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract. Development. 2008;135(21):3577–86. doi: 10.1242/dev.022350. PubMed DOI PMC
Mundell NA, Labosky PA. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates. Development. 2011;138(4):641–52. doi: 10.1242/dev.054718. PubMed DOI PMC
Mori-Akiyama Y, Akiyama H, Rowitch DH, de CB. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci U S A. 2003;100(16):9360–65. doi: 10.1073/pnas.1631288100. PubMed DOI PMC
Bai Y, Wang J, Morikawa Y, Bonilla-Claudio M, Klysik E, Martin JF. Bmp signaling represses Vegfa to promote outflow tract cushion development. Development. 2013;140(16):3395–402. doi: 10.1242/dev.097360. PubMed DOI PMC
Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci. 2011;14(11):1481–88. doi: 10.1038/nn.2928. PubMed DOI
Early embryogenesis in CHDFIDD mouse model reveals facial clefts and altered cranial neurogenesis
Meis2 controls skeletal formation in the hyoid region
The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage
MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus
Meis homeobox genes control progenitor competence in the retina
Neural crest cells require Meis2 for patterning the mandibular arch via the Sonic hedgehog pathway
The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice