Early embryogenesis in CHDFIDD mouse model reveals facial clefts and altered cranial neurogenesis

. 2024 Jun 01 ; 17 (6) : . [epub] 20240620

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38511331

Grantová podpora
19-01205S Czech Science Foundation
19-01205S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/15_003/0000460 Ministerstvo Školství, Mládeže a Tělovýchovy

CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.

Zobrazit více v PubMed

Adameyko, I., Lallemend, F., Furlan, A., Zinin, N., Aranda, S., Kitambi, S. S., Blanchart, A., Favaro, R., Nicolis, S., Lübke, M.et al. (2012). Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development 139, 397-410. 10.1242/dev.065581 PubMed DOI PMC

Barry, D. J., Durkin, C. H., Abella, J. V. and Way, M. (2015). Open source software for quantification of cell migration, protrusions, and fluorescence intensities. J. Cell Biol. 209, 163-180. 10.1083/jcb.201501081 PubMed DOI PMC

Bartkowiak, B., Liu, P., Phatnani, H. P., Fuda, N. J., Cooper, J. J., Price, D. H., Adelman, K., Lis, J. T. and Greenleaf, A. L. (2010). CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 24, 2303-2316. 10.1101/gad.1968210 PubMed DOI PMC

Blazek, D., Kohoutek, J., Bartholomeeusen, K., Johansen, E., Hulinkova, P., Luo, Z., Cimermancic, P., Ule, J. and Peterlin, B. M. (2011). The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25, 2158-2172. 10.1101/gad.16962311 PubMed DOI PMC

Chai, Q., Li, S., Collins, M. K., Li, R., Ahmad, I., Johnson, S. F., Frabutt, D. A., Yang, Z., Shen, X., Sun, L.et al. (2021). HIV-1 Nef interacts with the cyclin K/CDK13 complex to antagonize SERINC5 for optimal viral infectivity. Cell Rep. 36, 109514. 10.1016/j.celrep.2021.109514 PubMed DOI PMC

Chen, H. R., Lin, G. T., Huang, C. K. and Fann, M. J. (2014). Cdk12 and Cdk13 regulate axonal elongation through a common signaling pathway that modulates Cdk5 expression. Exp. Neurol. 261, 10-21. 10.1016/j.expneurol.2014.06.024 PubMed DOI

Colas, P. (2020). Cyclin-dependent kinases and rare developmental disorders. Orphanet J. Rare Dis. 15, 203. 10.1186/s13023-020-01472-y PubMed DOI PMC

Furlan, A. and Adameyko, I. (2018). Schwann cell precursor: a neural crest cell in disguise? Dev. Biol. 444 Suppl. 1, S25-S35. 10.1016/j.ydbio.2018.02.008 PubMed DOI

Gao, L., Guo, H., Ye, N., Bai, Y., Liu, X., Yu, P., Xue, Y., Ma, S., Wei, K., Jin, Y.et al. (2013). Oral and craniofacial manifestations and two novel missense mutations of the NTRK1 gene identified in the patient with congenital insensitivity to pain with anhidrosis. PLoS One 8, e66863. 10.1371/journal.pone.0066863 PubMed DOI PMC

Griffin, J. N., Compagnucci, C., Hu, D., Fish, J., Klein, O., Marcucio, R. and Depew, M. J. (2013). Fgf8 dosage determines midfacial integration and polarity within the nasal and optic capsules. Dev. Biol. 374, 185-197. 10.1016/j.ydbio.2012.11.014 PubMed DOI PMC

Hamilton, M. J. and Suri, M. (2019). CDK13-related disorder. Adv. Genet. 103, 163-182. 10.1016/bs.adgen.2018.11.001 PubMed DOI

Higashiyama, H. and Kuratani, S. (2014). On the maxillary nerve. J. Morphol. 275, 17-38. 10.1002/jmor.20193 PubMed DOI

Hunter, E., Begbie, J., Mason, I. and Graham, A. (2001). Early development of the mesencephalic trigeminal nucleus. Dev. Dyn. 222, 484-493. 10.1002/dvdy.1197 PubMed DOI

Jeong, J., Mao, J., Tenzen, T., Kottmann, A. H. and Mcmahon, A. P. (2004). Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 18, 937-951. 10.1101/gad.1190304 PubMed DOI PMC

Kaneko, S., Son, J., Bonasio, R., Shen, S. S. and Reinberg, D. (2014). Nascent RNA interaction keeps PRC2 activity poised and in check. Genes Dev. 28, 1983-1988. 10.1101/gad.247940.114 PubMed DOI PMC

Kholmanskikh, S. S., Dobrin, J. S., Wynshaw-Boris, A., Letourneau, P. C. and Ross, M. E. (2003). Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J. Neurosci. 23, 8673-8681. 10.1523/JNEUROSCI.23-25-08673.2003 PubMed DOI PMC

Lanier, J., Dykes, I. M., Nissen, S., Eng, S. R. and Turner, E. E. (2009). Brn3a regulates the transition from neurogenesis to terminal differentiation and represses non-neural gene expression in the trigeminal ganglion. Dev. Dyn. 238, 3065-3079. 10.1002/dvdy.22145 PubMed DOI PMC

Leslie, E. J., Carlson, J. C., Shaffer, J. R., Butali, A., Buxó, C. J., Castilla, E. E., Christensen, K., Deleyiannis, F. W., Leigh Field, L., Hecht, J. T.et al. (2017). Genome-wide meta-analyses of nonsyndromic orofacial clefts identify novel associations between FOXE1 and all orofacial clefts, and TP63 and cleft lip with or without cleft palate. Hum. Genet. 136, 275-286. 10.1007/s00439-016-1754-7 PubMed DOI PMC

Levi, G., Mantero, S., Barbieri, O., Cantatore, D., Paleari, L., Beverdam, A., Genova, F., Robert, B. and Merlo, G. R. (2006). Msx1 and Dlx5 act independently in development of craniofacial skeleton, but converge on the regulation of Bmp signaling in palate formation. Mech. Dev. 123, 3-16. 10.1016/j.mod.2005.10.007 PubMed DOI

Liu, X., Bennison, S. A., Robinson, L. and Toyo-Oka, K. (2021). Responsible genes for neuronal migration in the chromosome 17p13.3: beyond. Brain Sci 12, 56. 10.3390/brainsci12010056 PubMed DOI PMC

Louryan, S., Biermans, J. and Flemal, F. (1995). Nerve growth factor in the developing craniofacial region of the mouse embryo. Eur. J. Morphol. 33, 415-419. PubMed

Machon, O., Masek, J., Machonova, O., Krauss, S. and Kozmik, Z. (2015). Meis2 is essential for cranial and cardiac neural crest development. BMC Dev. Biol. 15, 40. 10.1186/s12861-015-0093-6 PubMed DOI PMC

Meyer, D., Yamaai, T., Garratt, A., Riethmacher-Sonnenberg, E., Kane, D., Theill, L. E. and Birchmeier, C. (1997). Isoform-specific expression and function of neuregulin. Development 124, 3575-3586. 10.1242/dev.124.18.3575 PubMed DOI

Nakajima, K., Miranda, A., Craig, D. W., Shekhtman, T., Kmoch, S., Bleyer, A., Szelinger, S., Kato, T. and Kelsoe, J. R. (2020). Ntrk1 mutation co-segregating with bipolar disorder and inherited kidney disease in a multiplex family causes defects in neuronal growth and depression-like behavior in mice. Transl. Psychiatry 10, 407. 10.1038/s41398-020-01087-8 PubMed DOI PMC

Nováková, M., Hampl, M., Vrábel, D., Procházka, J., Petrezselyová, S., Procházková, M., Sedláček, R., Kavková, M., Zikmund, T., Kaiser, J.et al. (2019). Mouse model of congenital heart defects, dysmorphic facial features and intellectual developmental disorders as a result of non-functional CDK13. Front. Cell Dev. Biol. 7, 155. 10.3389/fcell.2019.00155 PubMed DOI PMC

Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, Pant, H. C., Brady, R. O., Martin, L. J. and Kulkarni, A. B. (1996). Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA, 93, 11173-11178. 10.1073/pnas.93.20.11173 PubMed DOI PMC

Olivera, S., Rodriguez-Ithurralde, D. and Henley, J. M. (2003). Acetylcholinesterase promotes neurite elongation, synapse formation, and surface expression of AMPA receptors in hippocampal neurones. Mol. Cell. Neurosci. 23, 96-106. 10.1016/S1044-7431(03)00021-6 PubMed DOI PMC

Onesto, M. M., Short, C. A., Rempel, S. K., Catlett, T. S. and Gomez, T. M. (2021). Growth factors as axon guidance molecules: lessons from. Front. Neurosci. 15, 678454. 10.3389/fnins.2021.678454 PubMed DOI PMC

Pilarova, K., Herudek, J. and Blazek, D. (2020). CDK12: cellular functions and therapeutic potential of versatile player in cancer. NAR Cancer 2, zcaa003. 10.1093/narcan/zcaa003 PubMed DOI PMC

Rizos, M., Negrón, R. J. and Serman, N. (1998). Möbius syndrome with dental involvement: a case report and literature review. Cleft Palate Craniofac. J. 35, 262-268. 10.1597/1545-1569_1998_035_0262_mbswdi_2.3.co_2 PubMed DOI

Serafini, T., Colamarino, S. A., Leonardo, E. D., Wang, H., Beddington, R., Skarnes, W. C. and Tessier-Lavigne, M. (1996). Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001-1014. 10.1016/S0092-8674(00)81795-X PubMed DOI

Shah, K. and Rossie, S. (2018). Tale of the good and the bad Cdk5: remodeling of the actin cytoskeleton in the brain. Mol. Neurobiol. 55, 3426-3438. 10.1007/s12035-017-0525-3 PubMed DOI PMC

Tang, P. M., Zhang, Y. Y., Xiao, J., Tang, P. C., Chung, J. Y., Li, J., Xue, V. W., Huang, X. R., Chong, C. C., Ng, C. F.et al. (2020). Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc. Natl. Acad. Sci. USA 117, 20741-20752. 10.1073/pnas.1917663117 PubMed DOI PMC

Tomas-Roca, L., Tsaalbi-Shtylik, A., Jansen, J. G., Singh, M. K., Epstein, J. A., Altunoglu, U., Verzijl, H., Soria, L., Van Beusekom, E., Roscioli, T.et al. (2015). De novo mutations in PLXND1 and REV3L cause Möbius syndrome. Nat. Commun. 6, 7199. 10.1038/ncomms8199 PubMed DOI PMC

Trinh, J., Kandaswamy, K. K., Werber, M., Weiss, M. E. R., Oprea, G., Kishore, S., Lohmann, K. and Rolfs, A. (2019). Novel pathogenic variants and multiple molecular diagnoses in neurodevelopmental disorders. J. Neurodev. Disord 11, 11. 10.1186/s11689-019-9270-4 PubMed DOI PMC

Venturin, M., Moncini, S., Villa, V., Russo, S., Bonati, M. T., Larizza, L. and Riva, P. (2006). Mutations and novel polymorphisms in coding regions and UTRs of CDK5R1 and OMG genes in patients with non-syndromic mental retardation. Neurogenetics 7, 59-66. 10.1007/s10048-005-0026-9 PubMed DOI

Verzi, M. P., Agarwal, P., Brown, C., Mcculley, D. J., Schwarz, J. J. and Black, B. L. (2007). The transcription factor MEF2C is required for craniofacial development. Dev. Cell 12, 645-652. 10.1016/j.devcel.2007.03.007 PubMed DOI PMC

Verzijl, H. T., Van Der Zwaag, B., Cruysberg, J. R. and Padberg, G. W. (2003). Möbius syndrome redefined: a syndrome of rhombencephalic maldevelopment. Neurology 61, 327-333. 10.1212/01.WNL.0000076484.91275.CD PubMed DOI

Visel, A., Carson, J., Oldekamp, J., Warnecke, M., Jakubcakova, V., Zhou, X., Shaw, C. A., Alvarez-Bolado, G. and Eichele, G. (2007). Regulatory pathway analysis by high-throughput in situ hybridization. PLoS Genet. 3, 1867-1883. 10.1371/journal.pgen.0030178 PubMed DOI PMC

Vix, J., Mathis, S., Lacoste, M., Guillevin, R. and Neau, J. P. (2015). Neurological manifestations in parry-romberg syndrome: 2 case reports. Medicine (Baltimore) 94, e1147. 10.1097/MD.0000000000001147 PubMed DOI PMC

Waddington, J. L., Katina, S., O'tuathaigh, C. M. P. and Bowman, A. W. (2017). Translational genetic modelling of 3D craniofacial Dysmorphology: elaborating the facial phenotype of neurodevelopmental disorders through the “prism” of schizophrenia. Curr. Behav. Neurosci. Rep. 4, 322-330. 10.1007/s40473-017-0136-3 PubMed DOI PMC

Wu, C., Xie, T., Guo, Y., Wang, D., Qiu, M., Han, R., Qing, G., Liang, K. and Liu, H. (2023). CDK13 phosphorylates the translation machinery and promotes tumorigenic protein synthesis. Oncogene 42, 1321-1330. 10.1038/s41388-023-02653-2 PubMed DOI

Yigit, G., Brown, K. E., Kayserili, H., Pohl, E., Caliebe, A., Zahnleiter, D., Rosser, E., Bögershausen, N., Uyguner, Z. O., Altunoglu, U.et al. (2015). Mutations in CDK5RAP2 cause Seckel syndrome. Mol. Genet. Genomic Med. 3, 467-480. 10.1002/mgg3.158 PubMed DOI PMC

Yingling, J., Toyo-Oka, K. and Wynshaw-Boris, A. (2003). Miller-Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse. Am. J. Hum. Genet. 73, 475-488. 10.1086/378096 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace