Ntrk1 mutation co-segregating with bipolar disorder and inherited kidney disease in a multiplex family causes defects in neuronal growth and depression-like behavior in mice
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 MH094483
NIMH NIH HHS - United States
T32 GM008666
NIGMS NIH HHS - United States
PubMed
33235206
PubMed Central
PMC7687911
DOI
10.1038/s41398-020-01087-8
PII: 10.1038/s41398-020-01087-8
Knihovny.cz E-zdroje
- MeSH
- bipolární porucha * genetika MeSH
- deprese MeSH
- mutace MeSH
- myši MeSH
- nemoci ledvin * MeSH
- receptor trkA * genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- receptor trkA * MeSH
Previously, we reported a family in which bipolar disorder (BD) co-segregates with a Mendelian kidney disorder linked to 1q22. The causative renal gene was later identified as MUC1. Genome-wide linkage analysis of BD in the family yielded a peak at 1q22 that encompassed the NTRK1 and MUC1 genes. NTRK1 codes for TrkA (Tropomyosin-related kinase A) which is essential for development of the cholinergic nervous system. Whole genome sequencing of the proband identified a damaging missense mutation, E492K, in NTRK1. Induced pluripotent stem cells were generated from family members, and then differentiated to neural stem cells (NSCs). E492K NSCs had reduced neurite outgrowth. A conditional knock-in mouse line, harboring the point mutation in the brain, showed depression-like behavior in the tail suspension test following challenge by physostigmine, a cholinesterase inhibitor. These results are consistent with the cholinergic hypothesis of depression. They imply that the NTRK1 E492K mutation, impairs cholinergic neurotransmission, and may convey susceptibility to bipolar disorder.
Department of Genetics University of Southern California Los Angeles USA
Department of Psychiatry Juntendo University Tokyo Japan
Department of Psychiatry University of California San Diego San Diego USA
Institute for Genomic Medicine University of California San Diego San Diego USA
Laboratory for Molecular Dynamics of Mental Disorders RIKEN Center for Brain Science Saitama Japan
Neurogenomics Division Translational Genomics Research Institute Arizona USA
Zobrazit více v PubMed
Goodwin, F. K., Jamison, K. R. & Ghaemi, S. N. Manic-Depressive Illness: Bipolar Disorders and Recurrent Depression. (Oxford University Press, Oxford, 2007).
Stahl, E. A. et al. Genome-wide association study identifies 30 Loci associated with bipolar disorder. bioRxiv 173062 10.1101/173062(2018). PubMed PMC
Ikeda M, Saito T, Kondo K, Iwata N. Genome-wide association studies of bipolar disorder: a systematic review of recent findings and their clinical implications. Psychiatry Clin. Neurosci. 2018;72:52–63. doi: 10.1111/pcn.12611. PubMed DOI
Ament SA, et al. Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc. Natl Acad. Sci. 2015;112:3576–3581. doi: 10.1073/pnas.1424958112. PubMed DOI PMC
Kataoka M, et al. Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations. Mol. Psychiatry. 2016;21:885–893. doi: 10.1038/mp.2016.69. PubMed DOI PMC
Craddock N, et al. Familial cosegregation of major affective disorder and Darier’s disease (Keratosis Follicularis) Br. J. Psychiatry. 1994;164:355–358. doi: 10.1192/bjp.164.3.355. PubMed DOI
Nanko S, Yokoyama H, Hoshino Y, Kumashiro H, Mikuni M. Organic mood syndrome in two siblings with Wolfram syndrome. Br. J. Psychiatry. 1992;161:282–282. doi: 10.1192/bjp.161.2.282. PubMed DOI
Siciliano G, et al. Autosomal dominant external ophthalmoplegia and bipolar affective disorder associated with a mutation in the ANT1 gene. Neuromuscul. Disord. 2003;13:162–165. doi: 10.1016/S0960-8966(02)00221-3. PubMed DOI
Kimmel RJ, et al. Cosegregation of bipolar disorder and autosomal-dominant medullary cystic kidney disease in a large family. Am. J. Psychiatry. 2005;162:1972–1974. doi: 10.1176/appi.ajp.162.10.1972. PubMed DOI
Kirby A, et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 2013;45:299–303. doi: 10.1038/ng.2543. PubMed DOI PMC
Dulawa SC, Janowsky DS. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol. Psychiatry. 2019;24:694–709. doi: 10.1038/s41380-018-0219-x. PubMed DOI PMC
Gillin JC. The cholinergic rapid eye movement induction test with arecoline in depression. Arch. Gen. Psychiatry. 1991;48:264. doi: 10.1001/archpsyc.1991.01810270076011. PubMed DOI
Wohleb E, Gerhard D, Thomas A, Duman R. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine. Curr. Neuropharmacol. 2016;15:11–20. doi: 10.2174/1570159X14666160309114549. PubMed DOI PMC
Greenwood TA, et al. Further evidence for linkage of bipolar disorder to chromosomes 6 and 17 in a new independent pedigree series. Bipolar Disord. 2012;14:71–79. doi: 10.1111/j.1399-5618.2011.00970.x. PubMed DOI PMC
Sassa T, Gomi H, Itohara S. Postnatal expression of Cdkl2 in mouse brain revealed by LacZ inserted into the Cdkl2 locus. Cell Tissue Res. 2004;315:147–156. doi: 10.1007/s00441-003-0828-8. PubMed DOI
Sakai K, Miyazaki J. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem. Biophys. Res. Commun. 1997;237:318–324. doi: 10.1006/bbrc.1997.7111. PubMed DOI
Nakajima K, et al. Exome sequencing in the knockin mice generated using the CRISPR/Cas system. Sci. Rep. 2016;6:34703. doi: 10.1038/srep34703. PubMed DOI PMC
Yamanishi K, et al. Hepatocyte nuclear factor 4 Alpha is a key factor related to depression and physiological homeostasis in the mouse brain. PLoS ONE. 2015;10:e0119021. doi: 10.1371/journal.pone.0119021. PubMed DOI PMC
Kasahara T, et al. Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus. Mol. Psychiatry. 2016;21:39–48. doi: 10.1038/mp.2015.156. PubMed DOI PMC
Kaech S, Banker G. Culturing hippocampal neurons. Nat. Protoc. 2006;1:2406–2415. doi: 10.1038/nprot.2006.356. PubMed DOI
Smeyne RJ, et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 1994;368:246–249. doi: 10.1038/368246a0. PubMed DOI
Silos-Santiago I, et al. Non-TrkA-expressing small DRG neurons are lost in TrkA deficient mice. J. Neurosci. 1995;15:5929–5942. doi: 10.1523/JNEUROSCI.15-09-05929.1995. PubMed DOI PMC
Mineur YS, et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc. Natl Acad. Sci. 2013;110:3573–3578. doi: 10.1073/pnas.1219731110. PubMed DOI PMC
Scola G, Andreazza AC. The role of neurotrophins in bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;56C:122–128. PubMed
Marshall CR, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 2017;49:27–35. doi: 10.1038/ng.3725. PubMed DOI PMC
Mellerup E, et al. Combinations of genetic variants associated with bipolar disorder. PLoS ONE. 2017;12:e0189739. doi: 10.1371/journal.pone.0189739. PubMed DOI PMC
Whalley HC, et al. A GRIK4 variant conferring protection against bipolar disorder modulates hippocampal function. Mol. Psychiatry. 2009;14:467–468. doi: 10.1038/mp.2009.7. PubMed DOI
Debnath M, et al. The HLA-G low expressor genotype is associated with protection against bipolar disorder. Hum. Immunol. 2013;74:593–597. doi: 10.1016/j.humimm.2012.11.032. PubMed DOI
Davidson GL, et al. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J. Neurol. 2012;259:1673–1685. doi: 10.1007/s00415-011-6397-y. PubMed DOI PMC
Li N, et al. Heterogeneity of clinical features and mutation analysis of NTRK1 in Han Chinese patients with congenital insensitivity to pain with anhidrosis. J. Pain. Res. 2019;12:453–465. doi: 10.2147/JPR.S188566. PubMed DOI PMC
Verhoeven K, et al. Recent advances in hereditary sensory and autonomic neuropathies. Curr. Opin. Neurol. 2006;19:474–480. doi: 10.1097/01.wco.0000245370.82317.f6. PubMed DOI
Holtzman DM, et al. TrkA expression in the CNS: evidence for the existence of several novel NGF-responsive CNS neurons. J. Neurosci. 1995;15:1567–1576. doi: 10.1523/JNEUROSCI.15-02-01567.1995. PubMed DOI PMC
Fagan AM, Garber M, Barbacid M, Silos-Santiago I, Holtzman DM. A role for TrkA during maturation of striatal and basal forebrain cholinergic neurons in vivo. J. Neurosci. 1997;17:7644–7654. doi: 10.1523/JNEUROSCI.17-20-07644.1997. PubMed DOI PMC
Indo Y, et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat. Genet. 1996;13:485–488. doi: 10.1038/ng0896-485. PubMed DOI
Bonofiglio, R. et al. Nerve growth factor (NGF) and NGF-receptor expression in diseased human kidneys. J. Nephrol. 20, 186–195 (2007). PubMed
Tomioka T, et al. LIM homeobox 8 (Lhx8) is a key regulator of the cholinergic neuronal function via a tropomyosin receptor kinase A (TrkA)-mediated positive feedback loop. J. Biol. Chem. 2014;289:1000–1010. doi: 10.1074/jbc.M113.494385. PubMed DOI PMC
Kumamaru E, et al. Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol. Endocrinol. 2008;22:546–558. doi: 10.1210/me.2007-0264. PubMed DOI PMC
Castrén E, Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev. Neurobiol. 2010;70:289–297. doi: 10.1002/dneu.20758. PubMed DOI
Acsády L, Pascual M, Rocamora N, Soriano E, Freund TF. Nerve growth factor but not neurotrophin-3 is synthesized by hippocampal GABAergic neurons that project to the medial septum. Neuroscience. 2000;98:23–31. doi: 10.1016/S0306-4522(00)00091-9. PubMed DOI
Early embryogenesis in CHDFIDD mouse model reveals facial clefts and altered cranial neurogenesis