Mouse Model of Congenital Heart Defects, Dysmorphic Facial Features and Intellectual Developmental Disorders as a Result of Non-functional CDK13

. 2019 ; 7 () : 155. [epub] 20190807

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31440507

Congenital heart defects, dysmorphic facial features and intellectual developmental disorders (CHDFIDD) syndrome in humans was recently associated with mutation in CDK13 gene. In order to assess the loss of function of Cdk13 during mouse development, we employed gene trap knock-out (KO) allele in Cdk13 gene. Embryonic lethality of Cdk13-deficient animals was observed by the embryonic day (E) 16.5, while live embryos were observed on E15.5. At this stage, improper development of multiple organs has been documented, partly resembling defects observed in patients with mutated CDK13. In particular, overall developmental delay, incomplete secondary palate formation with variability in severity among Cdk13-deficient animals or complete midline deficiency, kidney failure accompanied by congenital heart defects were detected. Based on further analyses, the lethality at this stage is a result of heart failure most likely due to multiple heart defects followed by insufficient blood circulation resulting in multiple organs dysfunctions. Thus, Cdk13 KO mice might be a very useful model for further studies focused on delineating signaling circuits and molecular mechanisms underlying CHDFIDD caused by mutation in CDK13 gene.

Zobrazit více v PubMed

Al-Balool H. H., Weber D., Liu Y., Wade M., Guleria K., Nam P. L., et al. (2011). Post-transcriptional exon shuffling events in humans can be evolutionarily conserved and abundant. Genome Res. 21 1788–1799. 10.1101/gr.116442.110 PubMed DOI PMC

Bakre A., Andersen L. E., Meliopoulos V., Coleman K., Yan X., Brooks P., et al. (2013). Identification of host kinase genes required for Influenza virus replication and the regulatory role of MicroRNAs. PLoS One 8:e66796. 10.1371/journal.pone.0066796 PubMed DOI PMC

Bartkowiak B., Greenleaf A. L. (2015). Expression, purification, and identification of associated proteins of the full-length hCDK12/CyclinK complex. J. Biol. Chem. 290 1786–1795. 10.1074/jbc.M114.612226 PubMed DOI PMC

Bartkowiak B., Liu P., Phatnani H. P., Fuda N. J., Cooper J. J., Price D. H., et al. (2010). CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 24 2303–2316. 10.1101/gad.1968210 PubMed DOI PMC

Berro R., Pedati C., Kehn-Hall K., Wu W., Klase Z., Even Y., et al. (2008). CDK13, a new potential human immunodeficiency virus type 1 inhibitory factor regulating viral mRNA splicing. J. Virol. 82 7155–7166. 10.1128/JVI.02543-07 PubMed DOI PMC

Blazek D., Kohoutek J., Bartholomeeusen K., Johansen E., Hulinkova P., Luo Z., et al. (2011). The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25 2158–2172. 10.1101/gad.16962311 PubMed DOI PMC

Bostwick B. L., McLean S., Posey J. E., Streff H. E., Gripp K. W., Blesson A., et al. (2017). Phenotypic and molecular characterisation of CDK13-related congenital heart defects, dysmorphic facial features and intellectual developmental disorders. Genome Med. 9:73. 10.1186/s13073-017-0463-8 PubMed DOI PMC

Carneiro T. N., Krepischi A. C., Costa S. S., Tojal da Silva I., Vianna-Morgante A. M., Valieris R., et al. (2018). Utility of trio-based exome sequencing in the elucidation of the genetic basis of isolated syndromic intellectual disability: illustrative cases. Appl. Clin. Genet. 11 93–98. 10.2147/TACG.S165799 PubMed DOI PMC

Chen H. R., Juan H. C., Wong Y. H., Tsai J. W., Fann M. J. (2017). Cdk12 Regulates Neurogenesis and Late-Arising Neuronal Migration in the Developing Cerebral Cortex. Cereb. Cortex 27 2289–2302. 10.1093/cercor/bhw081 PubMed DOI

Chen H. R., Lin G. T., Huang C. K., Fann M. J. (2014). Cdk12 and Cdk13 regulate axonal elongation through a common signaling pathway that modulates Cdk5 expression. Exp. Neurol. 261 10–21. 10.1016/j.expneurol.2014.06.024 PubMed DOI

Cheng S. W., Kuzyk M. A., Moradian A., Ichu T. A., Chang V. C., Tien J. F., et al. (2012). Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol. Cell. Biol. 32 4691–4704. 10.1128/MCB.06267-11 PubMed DOI PMC

Dai Q., Lei T., Zhao C., Zhong J., Tang Y. Z., Chen B., et al. (2012). Cyclin K-containing kinase complexes maintain self-renewal in murine embryonic stem cells. J. Biol. Chem. 287 25344–25352. 10.1074/jbc.M111.321760 PubMed DOI PMC

Davidson L., Muniz L., West S. (2014). 3′ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev. 28 342–356. 10.1101/gad.231274.113 PubMed DOI PMC

Deciphering Developmental Disorders Study (2017). Prevalence and architecture of de novo mutations in developmental disorders. Nature 542 433–438. 10.1038/nature21062 PubMed DOI PMC

Even Y., Durieux S., Escande M. L., Lozano J. C., Peaucellier G., Weil D., et al. (2006). CDC2L5, a Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo. J. Cell. Biochem. 99 890–904. 10.1002/jcb.20986 PubMed DOI

Even Y., Escande M. L., Fayet C., Geneviere A. M. (2016). CDK13, a Kinase Involved in Pre-mRNA Splicing, Is a Component of the Perinucleolar Compartment. PLoS One 11:e0149184. 10.1371/journal.pone.0149184 PubMed DOI PMC

Fan Y., Yin W., Hu B., Kline A. D., Zhang V. W., Liang D., et al. (2018). De Novo mutations of CCNK cause a syndromic neurodevelopmental disorder with distinctive facial dysmorphism. Am. J. Hum. Genet. 103 448–455. 10.1016/j.ajhg.2018.07.019 PubMed DOI PMC

Firestein R., Bass A. J., Kim S. Y., Dunn I. F., Silver S. J., Guney I., et al. (2008). CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455 547–551. 10.1038/nature07179 PubMed DOI PMC

Fryer C. J., White J. B., Jones K. A. (2004). Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell. 16 509–520. 10.1016/j.molcel.2004.10.014 PubMed DOI

Fujita T., Ryser S., Piuz I., Schlegel W. (2008). Up-regulation of P-TEFb by the MEK1-extracellular signal-regulated kinase signaling pathway contributes to stimulated transcription elongation of immediate early genes in neuroendocrine cells. Mol. Cell. Biol. 28 1630–1643. 10.1128/mcb.01767-07 PubMed DOI PMC

Greenleaf A. L. (2018). Human CDK12 and CDK13, multi-tasking CTD kinases for the new millennium. Transcription 10 91–110. 10.1080/21541264.2018.1535211 PubMed DOI PMC

Greifenberg A. K., Honig D., Pilarova K., Duster R., Bartholomeeusen K., Bosken C. A., et al. (2016). Structural and functional analysis of the Cdk13/Cyclin K complex. Cell Rep. 14 320–331. 10.1016/j.celrep.2015.12.025 PubMed DOI

Hamilton M. J., Caswell R. C., Canham N., Cole T., Firth H. V., Foulds N., et al. (2018). Heterozygous mutations affecting the protein kinase domain of CDK13 cause a syndromic form of developmental delay and intellectual disability. J. Med. Genet. 55 28–38. 10.1136/jmedgenet-2017-104620 PubMed DOI PMC

Johnson S. F., Cruz C., Greifenberg A. K., Dust S., Stover D. G., Chi D., et al. (2016). CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer. Cell Rep. 17 2367–2381. 10.1016/j.celrep.2016.10.077 PubMed DOI PMC

Juan H. C., Lin Y., Chen H. R., Fann M. J. (2016). Cdk12 is essential for embryonic development and the maintenance of genomic stability. Cell Death Differ. 23 1038–1048. 10.1038/cdd.2015.157 PubMed DOI PMC

Kim H. E., Kim D. G., Lee K. J., Son J. G., Song M. Y., Park Y. M., et al. (2012). Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas. PLoS One 7:e43223. 10.1371/journal.pone.0043223 PubMed DOI PMC

Ko T. K., Kelly E., Pines J. (2001). CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles. J. Cell Sci. 114 2591–2603. PubMed

Kohoutek J. (2009). P-TEFb- the final frontier. Cell Div. 4:19. 10.1186/1747-1028-4-19 PubMed DOI PMC

Kohoutek J., Blazek D. (2012). Cyclin K goes with Cdk12 and Cdk13. Cell Div. 7:12. 10.1186/1747-1028-7-12 PubMed DOI PMC

Lee M. K., Shaffer J. R., Leslie E. J., Orlova E., Carlson J. C., Feingold E., et al. (2017). Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2. PLoS One 12:e0176566. 10.1371/journal.pone.0176566 PubMed DOI PMC

Liang K., Gao X., Gilmore J. M., Florens L., Washburn M. P., Smith E., et al. (2015). Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol. Cell. Biol 35 928–938. 10.1128/MCB.01426-14 PubMed DOI PMC

Meyers E. N., Lewandoski M., Martin G. R. (1998). An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat. Genet. 18 136–141. 10.1038/ng0298-136 PubMed DOI

Neumuller R. A., Richter C., Fischer A., Novatchkova M., Neumuller K. G., Knoblich J. A. (2011). Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 8 580–593. 10.1016/j.stem.2011.02.022 PubMed DOI PMC

Pan J., Xue Y., Chen S., Qiu H., Wu C., Jiang H., et al. (2012). Establishment and characterization of a new human acute myelomonocytic leukemia cell line JIH-3. Leuk. Res. 36 889–894. 10.1016/j.leukres.2012.01.012 PubMed DOI

Pang X., Zhao Y., Wang J., Zhou Q., Xu L., Kang, et al. (2017). The bioinformatic analysis of the dysregulated genes and microRNAs in entorhinal cortex, hippocampus, and blood for Alzheimer’s disease. Biomed. Res. Int. 2017:9084507. 10.1155/2017/9084507 PubMed DOI PMC

Pham C. T., MacIvor D. M., Hug B. A., Heusel J. W., Ley T. J. (1996). Long-range disruption of gene expression by a selectable marker cassette. Proc. Natl. Acad. Sci. U.S.A. 93 13090–13095. 10.1073/pnas.93.23.13090 PubMed DOI PMC

Scacheri P. C., Crabtree J. S., Novotny E. A., Garrett-Beal L., Chen A., Edgemon K. A., et al. (2001). Bidirectional transcriptional activity of PGK-neomycin and unexpected embryonic lethality in heterozygote chimeric knockout mice. Genesis 30 259–263. 10.1002/gene.1072 PubMed DOI

Sifrim A., Hitz M. P., Wilsdon A., Breckpot J., Turki S. H., Thienpont B., et al. (2016). Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat. Genet. 48 1060–1065. 10.1038/ng.3627 PubMed DOI PMC

Smerdova L., Smerdova J., Kabatkova M., Kohoutek J., Blazek D., Machala M., et al. (2014). Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway. Carcinogenesis 35 2534–2543. 10.1093/carcin/bgu190 PubMed DOI

Truett G. E., Heeger P., Mynatt R. L., Truett A. A., Walker J. A., Warman M. L. (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29 52, 54. 10.2144/00291bm09 PubMed DOI

Uehara T., Takenouchi T., Kosaki R., Kurosawa K., Mizuno S., Kosaki K. (2018). Redefining the phenotypic spectrum of de novo heterozygous CDK13 variants: three patients without cardiac defects. Eur. J. Med. Genet. 61 243–247. 10.1016/j.ejmg.2017.12.004 PubMed DOI

van den Akker W. M. R., Brummelman I., Martis L. M., Timmermans R. N., Pfundt R., Kleefstra T., et al. (2018). De novo variants in CDK13 associated with syndromic ID/DD: molecular and clinical delineation of 15 individuals and a further review. Clin. Genet. 93 1000–1007. 10.1111/cge.13225 PubMed DOI

Wang Y., Pan X., Fan Y., Hu X., Liu X., Xiang M., et al. (2015). Dysregulated expression of microRNAs and mRNAs in myocardial infarction. Am. J. Transl. Res. 7 2291–2304. PubMed PMC

Xiang X., Deng L., Zhang J., Zhang X., Lei T., Luan G., et al. (2014). A distinct expression pattern of cyclin K in mammalian testes suggests a functional role in spermatogenesis. PLoS One 9:e101539. 10.1371/journal.pone.0101539 PubMed DOI PMC

Zhu H., Doherty J. R., Kuliyev E., Mead P. E. (2009). CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3/mixer. Dev. Dyn. 238 1346–1357. 10.1002/dvdy.21920 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...