Mouse Model of Congenital Heart Defects, Dysmorphic Facial Features and Intellectual Developmental Disorders as a Result of Non-functional CDK13
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31440507
PubMed Central
PMC6694211
DOI
10.3389/fcell.2019.00155
Knihovny.cz E-zdroje
- Klíčová slova
- cyclin, cyclin K, cyclin-dependent kinase (CDK), cyclin-dependent kinase 13, development, mouse, transcription regulation,
- Publikační typ
- časopisecké články MeSH
Congenital heart defects, dysmorphic facial features and intellectual developmental disorders (CHDFIDD) syndrome in humans was recently associated with mutation in CDK13 gene. In order to assess the loss of function of Cdk13 during mouse development, we employed gene trap knock-out (KO) allele in Cdk13 gene. Embryonic lethality of Cdk13-deficient animals was observed by the embryonic day (E) 16.5, while live embryos were observed on E15.5. At this stage, improper development of multiple organs has been documented, partly resembling defects observed in patients with mutated CDK13. In particular, overall developmental delay, incomplete secondary palate formation with variability in severity among Cdk13-deficient animals or complete midline deficiency, kidney failure accompanied by congenital heart defects were detected. Based on further analyses, the lethality at this stage is a result of heart failure most likely due to multiple heart defects followed by insufficient blood circulation resulting in multiple organs dysfunctions. Thus, Cdk13 KO mice might be a very useful model for further studies focused on delineating signaling circuits and molecular mechanisms underlying CHDFIDD caused by mutation in CDK13 gene.
Central European Institute of Technology Brno University of Technology Brno Czechia
Department of Chemistry and Toxicology Veterinary Research Institute Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Life Sciences Institute of Genome Sciences National Yang Ming University Taipei Taiwan
Zobrazit více v PubMed
Al-Balool H. H., Weber D., Liu Y., Wade M., Guleria K., Nam P. L., et al. (2011). Post-transcriptional exon shuffling events in humans can be evolutionarily conserved and abundant. PubMed DOI PMC
Bakre A., Andersen L. E., Meliopoulos V., Coleman K., Yan X., Brooks P., et al. (2013). Identification of host kinase genes required for Influenza virus replication and the regulatory role of MicroRNAs. PubMed DOI PMC
Bartkowiak B., Greenleaf A. L. (2015). Expression, purification, and identification of associated proteins of the full-length hCDK12/CyclinK complex. PubMed DOI PMC
Bartkowiak B., Liu P., Phatnani H. P., Fuda N. J., Cooper J. J., Price D. H., et al. (2010). CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. PubMed DOI PMC
Berro R., Pedati C., Kehn-Hall K., Wu W., Klase Z., Even Y., et al. (2008). CDK13, a new potential human immunodeficiency virus type 1 inhibitory factor regulating viral mRNA splicing. PubMed DOI PMC
Blazek D., Kohoutek J., Bartholomeeusen K., Johansen E., Hulinkova P., Luo Z., et al. (2011). The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. PubMed DOI PMC
Bostwick B. L., McLean S., Posey J. E., Streff H. E., Gripp K. W., Blesson A., et al. (2017). Phenotypic and molecular characterisation of CDK13-related congenital heart defects, dysmorphic facial features and intellectual developmental disorders. PubMed DOI PMC
Carneiro T. N., Krepischi A. C., Costa S. S., Tojal da Silva I., Vianna-Morgante A. M., Valieris R., et al. (2018). Utility of trio-based exome sequencing in the elucidation of the genetic basis of isolated syndromic intellectual disability: illustrative cases. PubMed DOI PMC
Chen H. R., Juan H. C., Wong Y. H., Tsai J. W., Fann M. J. (2017). Cdk12 Regulates Neurogenesis and Late-Arising Neuronal Migration in the Developing Cerebral Cortex. PubMed DOI
Chen H. R., Lin G. T., Huang C. K., Fann M. J. (2014). Cdk12 and Cdk13 regulate axonal elongation through a common signaling pathway that modulates Cdk5 expression. PubMed DOI
Cheng S. W., Kuzyk M. A., Moradian A., Ichu T. A., Chang V. C., Tien J. F., et al. (2012). Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. PubMed DOI PMC
Dai Q., Lei T., Zhao C., Zhong J., Tang Y. Z., Chen B., et al. (2012). Cyclin K-containing kinase complexes maintain self-renewal in murine embryonic stem cells. PubMed DOI PMC
Davidson L., Muniz L., West S. (2014). 3′ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. PubMed DOI PMC
Deciphering Developmental Disorders Study (2017). Prevalence and architecture of de novo mutations in developmental disorders. PubMed DOI PMC
Even Y., Durieux S., Escande M. L., Lozano J. C., Peaucellier G., Weil D., et al. (2006). CDC2L5, a Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo. PubMed DOI
Even Y., Escande M. L., Fayet C., Geneviere A. M. (2016). CDK13, a Kinase Involved in Pre-mRNA Splicing, Is a Component of the Perinucleolar Compartment. PubMed DOI PMC
Fan Y., Yin W., Hu B., Kline A. D., Zhang V. W., Liang D., et al. (2018). De Novo mutations of CCNK cause a syndromic neurodevelopmental disorder with distinctive facial dysmorphism. PubMed DOI PMC
Firestein R., Bass A. J., Kim S. Y., Dunn I. F., Silver S. J., Guney I., et al. (2008). CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. PubMed DOI PMC
Fryer C. J., White J. B., Jones K. A. (2004). Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. PubMed DOI
Fujita T., Ryser S., Piuz I., Schlegel W. (2008). Up-regulation of P-TEFb by the MEK1-extracellular signal-regulated kinase signaling pathway contributes to stimulated transcription elongation of immediate early genes in neuroendocrine cells. PubMed DOI PMC
Greenleaf A. L. (2018). Human CDK12 and CDK13, multi-tasking CTD kinases for the new millennium. PubMed DOI PMC
Greifenberg A. K., Honig D., Pilarova K., Duster R., Bartholomeeusen K., Bosken C. A., et al. (2016). Structural and functional analysis of the Cdk13/Cyclin K complex. PubMed DOI
Hamilton M. J., Caswell R. C., Canham N., Cole T., Firth H. V., Foulds N., et al. (2018). Heterozygous mutations affecting the protein kinase domain of CDK13 cause a syndromic form of developmental delay and intellectual disability. PubMed DOI PMC
Johnson S. F., Cruz C., Greifenberg A. K., Dust S., Stover D. G., Chi D., et al. (2016). CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer. PubMed DOI PMC
Juan H. C., Lin Y., Chen H. R., Fann M. J. (2016). Cdk12 is essential for embryonic development and the maintenance of genomic stability. PubMed DOI PMC
Kim H. E., Kim D. G., Lee K. J., Son J. G., Song M. Y., Park Y. M., et al. (2012). Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas. PubMed DOI PMC
Ko T. K., Kelly E., Pines J. (2001). CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles. PubMed
Kohoutek J. (2009). P-TEFb- the final frontier. PubMed DOI PMC
Kohoutek J., Blazek D. (2012). Cyclin K goes with Cdk12 and Cdk13. PubMed DOI PMC
Lee M. K., Shaffer J. R., Leslie E. J., Orlova E., Carlson J. C., Feingold E., et al. (2017). Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2. PubMed DOI PMC
Liang K., Gao X., Gilmore J. M., Florens L., Washburn M. P., Smith E., et al. (2015). Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. PubMed DOI PMC
Meyers E. N., Lewandoski M., Martin G. R. (1998). An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. PubMed DOI
Neumuller R. A., Richter C., Fischer A., Novatchkova M., Neumuller K. G., Knoblich J. A. (2011). Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. PubMed DOI PMC
Pan J., Xue Y., Chen S., Qiu H., Wu C., Jiang H., et al. (2012). Establishment and characterization of a new human acute myelomonocytic leukemia cell line JIH-3. PubMed DOI
Pang X., Zhao Y., Wang J., Zhou Q., Xu L., Kang, et al. (2017). The bioinformatic analysis of the dysregulated genes and microRNAs in entorhinal cortex, hippocampus, and blood for Alzheimer’s disease. PubMed DOI PMC
Pham C. T., MacIvor D. M., Hug B. A., Heusel J. W., Ley T. J. (1996). Long-range disruption of gene expression by a selectable marker cassette. PubMed DOI PMC
Scacheri P. C., Crabtree J. S., Novotny E. A., Garrett-Beal L., Chen A., Edgemon K. A., et al. (2001). Bidirectional transcriptional activity of PGK-neomycin and unexpected embryonic lethality in heterozygote chimeric knockout mice. PubMed DOI
Sifrim A., Hitz M. P., Wilsdon A., Breckpot J., Turki S. H., Thienpont B., et al. (2016). Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. PubMed DOI PMC
Smerdova L., Smerdova J., Kabatkova M., Kohoutek J., Blazek D., Machala M., et al. (2014). Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway. PubMed DOI
Truett G. E., Heeger P., Mynatt R. L., Truett A. A., Walker J. A., Warman M. L. (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). PubMed DOI
Uehara T., Takenouchi T., Kosaki R., Kurosawa K., Mizuno S., Kosaki K. (2018). Redefining the phenotypic spectrum of de novo heterozygous CDK13 variants: three patients without cardiac defects. PubMed DOI
van den Akker W. M. R., Brummelman I., Martis L. M., Timmermans R. N., Pfundt R., Kleefstra T., et al. (2018). De novo variants in CDK13 associated with syndromic ID/DD: molecular and clinical delineation of 15 individuals and a further review. PubMed DOI
Wang Y., Pan X., Fan Y., Hu X., Liu X., Xiang M., et al. (2015). Dysregulated expression of microRNAs and mRNAs in myocardial infarction. PubMed PMC
Xiang X., Deng L., Zhang J., Zhang X., Lei T., Luan G., et al. (2014). A distinct expression pattern of cyclin K in mammalian testes suggests a functional role in spermatogenesis. PubMed DOI PMC
Zhu H., Doherty J. R., Kuliyev E., Mead P. E. (2009). CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3 PubMed DOI PMC
Early embryogenesis in CHDFIDD mouse model reveals facial clefts and altered cranial neurogenesis