ChOP-CT: quantitative morphometrical analysis of the Hindbrain Choroid Plexus by X-ray micro-computed tomography

. 2024 Jan 24 ; 21 (1) : 9. [epub] 20240124

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38268040

Grantová podpora
GA21-05146S Grantová Agentura České Republiky
LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 38268040
PubMed Central PMC11406807
DOI 10.1186/s12987-023-00502-8
PII: 10.1186/s12987-023-00502-8
Knihovny.cz E-zdroje

The Hindbrain Choroid Plexus is a complex, cerebrospinal fluid-secreting tissue that projects into the 4th vertebrate brain ventricle. Despite its irreplaceability in the development and homeostasis of the entire central nervous system, the research of Hindbrain Choroid Plexus and other Choroid Plexuses has been neglected by neuroscientists for decades. One of the obstacles is the lack of tools that describe the complex shape of the Hindbrain Choroid Plexus in the context of brain ventricles. Here we introduce an effective tool, termed ChOP-CT, for the noninvasive, X-ray micro-computed tomography-based, three-dimensional visualization and subsequent quantitative spatial morphological analysis of developing mouse Hindbrain Choroid Plexus. ChOP-CT can reliably quantify Hindbrain Choroid Plexus volume, surface area, length, outgrowth angle, the proportion of the ventricular space occupied, asymmetries and general shape alterations in mouse embryos from embryonic day 13.5 onwards. We provide evidence that ChOP-CT is suitable for the unbiased evaluation and detection of the Hindbrain Choroid Plexus alterations within various mutant embryos. We believe, that thanks to its versatility, quantitative nature and the possibility of automation, ChOP-CT will facilitate the analysis of the Hindbrain Choroid Plexus in the mouse models. This will ultimately accelerate the screening of the candidate genes and mechanisms involved in the onset of various Hindbrain Choroid Plexus-related diseases.

Zobrazit více v PubMed

Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity. 2013;38(3):555–69. 10.1016/j.immuni.2013.02.012. PubMed DOI PMC

Dani N, Herbst RH, McCabe C, Green GS, Kaiser K, Head JP, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell. 2021;184(11):3056–74. 10.1016/j.cell.2021.04.003. PubMed DOI PMC

Kaiser K, Bryja V. Choroid plexus: the orchestrator of long-range signalling within the CNS. Int J Mol Sci. 2020;21(13):1–21. PubMed DOI PMC

Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(6):309–16. 10.1016/j.anorl.2011.03.002. PubMed DOI

Huang X, Ketova T, Fleming JT, Wang H, Dey SK, Litingtung Y, et al. Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development. 2009;136(15):2535–43. PubMed DOI PMC

Kaiser K, Gyllborg D, Procházka J, Salašová A, Kompaníková P, Molina FL, et al. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat Commun. 2019. 10.1038/s41467-019-09298-4. PubMed DOI PMC

Kompaníková P, Bryja V. Regulation of choroid plexus development and its functions. Cell Mol Life Sci. 2022;79(6):1–15. 10.1007/s00018-022-04314-1. PubMed DOI PMC

Casoni F, Croci L, Vincenti F, Podini P, Riba M, Massimino L, et al. ZFP423 regulates early patterning and multiciliogenesis in the hindbrain choroid plexus. Dev. 2020. 10.1242/dev.190173. PubMed DOI PMC

Kaiser K, Jang A, Kompanikova P, Lun MP, Prochazka J, Machon O, et al. MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus. Dev. 2021. 10.1242/dev.192054. PubMed DOI PMC

Perin P, Rossetti R, Ricci C, Cossellu D, Lazzarini S, Bethge P, et al. 3D reconstruction of the clarified rat hindbrain choroid plexus. Front Cell Dev Biol. 2021;9(July):1–14. PubMed PMC

Greiner T, Manzhula K, Baumann L, Kaddatz H, Runge J, Keiler J, et al. Morphology of the murine choroid plexus: attachment regions and spatial relation to the subarachnoid space. Front Neuroanat. 2022;16(October):1–12. PubMed PMC

Zhao L, Taso M, Dai W, Press DZ, Alsop DC. Non-invasive measurement of choroid plexus apparent blood flow with arterial spin labeling. Fluids Barriers CNS. 2020;17(1):1–11. 10.1186/s12987-020-00218-z. PubMed DOI PMC

Klistorner S, Barnett MH, Parratt J, Yiannikas C, Graham SL, Klistorner A. Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. Ann Clin Transl Neurol. 2022;9(10):1528–37. PubMed DOI PMC

Müller J, Sinnecker T, Wendebourg MJ, Schläger R, Kuhle J, Schädelin S, et al. Choroid plexus in multiple sclerosis vs Neuromyelitis optica spectrum disorder: a retrospective, cross-sectional analysis. Neurol Neuroimmunol Neuroinflammation. 2022. 10.1212/NXI.0000000000001147. PubMed DOI PMC

Yazdan-Panah A, Schmidt-Mengin M, Ricigliano VAG, Soulier T, Stankoff B, Colliot O. Automatic segmentation of the choroid plexuses: method and validation in controls and patients with multiple sclerosis. NeuroImage Clin. 2023;38:103368. PubMed DOI PMC

Langford MB, O’Leary CJ, Veeraval L, White A, Lanoue V, Cooper HM. WNT5a regulates epithelial morphogenesis in the developing choroid plexus. Cereb Cortex. 2020. 10.1093/cercor/bhz330. PubMed DOI

Paladini D, Donarini G, Parodi S, Volpe G, Sglavo G, Fulcheri E. Hindbrain morphometry and choroid plexus position in differential diagnosis of posterior fossa cystic malformations. Ultrasound Obstet Gynecol. 2019;54(2):207–14. PubMed DOI

Volpe P, De Robertis V, Volpe G, Boito S, Fanelli T, Olivieri C, et al. Position of the choroid plexus of the fourth ventricle in first- and second-trimester fetuses: a novel approach to early diagnosis of cystic posterior fossa anomalies. Ultrasound Obstet Gynecol. 2021;58(4):568–75. PubMed DOI

Kraemer A, Kovacheva E, Lanza G. Projection based evaluation of CT image quality in dimensional metrology. Dir. 2015;2015:10.

Wong MD, Dorr AE, Walls JR, Lerch JP, Mark HR. A novel 3D mouse embryo atlas based on micro-CT. Dev. 2012;139(17):3248–56. PubMed DOI PMC

Wong MD, Maezawa Y, Lerch JP, Mark HR. Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT. Dev. 2014;141(12):2533–41. PubMed DOI PMC

Rolfe SM, Whikehart SM, Maga AM. Deep learning enabled multi-organ segmentation of mouse embryos. Biol Open. 2023. 10.1242/bio.059698. PubMed DOI PMC

Aristizábal O, Mamou J, Ketterling JA, Turnbull DH. High-throughput, high-frequency 3D ultrasound for in utero analysis of embryonic mouse brain development. Ultrasound Med Biol. 2013;39(12):2321. PubMed DOI PMC

Nováková M, Hampl M, Vrábel D, Procházka J, Petrezselyová S, Procházková M, et al. Mouse model of congenital heart defects, dysmorphic facial features and intellectual developmental disorders as a result of non-functional PubMed PMC

Herbert J, Wilcox JN, Pham K-TC, Fremeau RT, Zeviani M, Dwork A, et al. Transthyretin: a choroid plexus-specific transport protein in human brain. The 1986 S. Weir Mitchell award. Neurology. 1986;36(7):900. PubMed DOI

Cela P, Hampl M, Shylo NA, Christopher KJ, Kavkova M, Landova M, et al. Ciliopathy protein PubMed DOI PMC

da Silva-Buttkus P, Spielmann N, Klein-Rodewald T, Schütt C, Aguilar-Pimentel A, Amarie OV, et al. Knockout mouse models as a resource for the study of rare diseases. Mamm Genome. 2023;34(2):244–61. 10.1007/s00335-023-09986-z. PubMed DOI PMC

Cacheiro P, Muñoz-Fuentes V, Murray SA, Dickinson ME, Bucan M, Nutter LMJ, et al. Human and mouse essentiality screens as a resource for disease gene discovery. Nat Commun. 2020;11(1):655. PubMed DOI PMC

Keep RF, Jones HC. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Dev Brain Res. 1990;56(1):47–53. PubMed DOI

Vickerton P, Jarvis J, Jeffery N. Concentration-dependent specimen shrinkage in iodine-enhanced microCT. J Anat. 2013;223(2):185–93. PubMed DOI PMC

Buytaert J, Goyens J, De Greef D, Aerts P, Dirckx J. Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM). Microsc Microanal. 2014;20(4):1208–17. PubMed DOI

Perin P, Voigt FF, Bethge P, Helmchen F, Pizzala R. iDISCO+ for the study of neuroimmune architecture of the rat auditory brainstem. Front Neuroanat. 2019;13(February):1–5. PubMed PMC

Christopher K, Wang B, Kong YWS. Forward genetics uncovers Transmembrane protein 107 as a novel factor required for ciliogenesis and Sonic Hedgehog signaling. Dev Biol. 2012;368(2):382–92. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...