WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
MC_PC_12009
Medical Research Council - United Kingdom
PubMed
30940800
PubMed Central
PMC6445127
DOI
10.1038/s41467-019-09298-4
PII: 10.1038/s41467-019-09298-4
Knihovny.cz E-resources
- MeSH
- Biological Transport MeSH
- Humans MeSH
- Lipoproteins cerebrospinal fluid MeSH
- Morphogenesis MeSH
- Mice, Inbred ICR MeSH
- Choroid Plexus metabolism MeSH
- Wnt-5a Protein genetics metabolism MeSH
- Rhombencephalon embryology metabolism MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Lipoproteins MeSH
- Wnt-5a Protein MeSH
- WNT5A protein, human MeSH Browser
- Wnt5a protein, mouse MeSH Browser
WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.
Central European Institute of Technology 625 00 Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno 62500 Czech Republic
See more in PubMed
Saito-Diaz K, et al. The way Wnt works: components and mechanism. Growth Factors. 2013;31:1–31. doi: 10.3109/08977194.2012.752737. PubMed DOI PMC
Bejsovec A. Wingless signaling: a genetic journey from morphogenesis to metastasis. Genetics. 2018;208:1311–1336. doi: 10.1534/genetics.117.300157. PubMed DOI PMC
Takada R, et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell. 2006;11:791–801. doi: 10.1016/j.devcel.2006.10.003. PubMed DOI
Ke J, Xu HE, Williams BO. Lipid modification in Wnt structure and function. Curr. Opin. Lipidol. 2013;24:129–133. doi: 10.1097/MOL.0b013e32835df2bf. PubMed DOI
Willert K, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423:448–452. doi: 10.1038/nature01611. PubMed DOI
Panáková D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature. 2005;435:58–65. doi: 10.1038/nature03504. PubMed DOI
Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 2012;14:1036–1045. doi: 10.1038/ncb2574. PubMed DOI
Beckett K, et al. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic. 2012;14:82–96. doi: 10.1111/tra.12016. PubMed DOI PMC
Korkut C, et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell. 2009;139:393–404. doi: 10.1016/j.cell.2009.07.051. PubMed DOI PMC
Mulligan KA, et al. Secreted Wingless-interacting molecule (Swim) promotes long-range signaling by maintaining Wingless solubility. Proc. Natl. Acad. Sci. 2012;109:370–377. doi: 10.1073/pnas.1119197109. PubMed DOI PMC
Huang, H. & Kornberg, T. B. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium. Elife10.7554/eLife.06114 (2015). PubMed PMC
Stanganello, E. et al. Filopodia-based Wnt transport during vertebrate tissue patterning. Nat. Commun. 10.1038/ncomms6846. (2015). PubMed
Serralbo O, Marcelle C. Migrating cells mediate long-range WNT signaling. Development. 2014;141:2057–2063. doi: 10.1242/dev.107656. PubMed DOI
Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation. Cell. 2015;163:1225–1236. doi: 10.1016/j.cell.2015.10.029. PubMed DOI
Mihara, E. et al. Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin. Elife10.7554/eLife.11621 (2016). PubMed PMC
Langton PF, Kakugawa S, Vincent JP. Making, exporting, and modulating Wnts. Trends Cell Biol. 2016;26:756–765. doi: 10.1016/j.tcb.2016.05.011. PubMed DOI
Johansson PA, et al. The transcription factor Otx2 regulates choroid plexus development and function. Development. 2013;140:1055–1066. doi: 10.1242/dev.090860. PubMed DOI
Lun MP, et al. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J. Neurosci. 2015;35:4903–4916. doi: 10.1523/JNEUROSCI.3081-14.2015. PubMed DOI PMC
Grove EA, Tole S, Limon J, Yip L, Ragsdale CW. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development. 1998;125:2315–2325. PubMed
Speake T, Freeman LJ, Brown PD. Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim. Biophys. Acta - Biomembr. 2003;1609:80–86. doi: 10.1016/S0005-2736(02)00658-2. PubMed DOI
Bartscherer K, Pelte N, Ingelfinger D, Boutros M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell. 2006;125:523–533. doi: 10.1016/j.cell.2006.04.009. PubMed DOI
Bänziger C, et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125:509–522. doi: 10.1016/j.cell.2006.02.049. PubMed DOI
Carpenter, E. M. . in The Choroid Plexus and Cerebrospinal Fluid: Emerging Roles in CNS Development, Maintenance, and Disease Progression (eds. Neman, J. & Chen, T. C. B. T.-T. C. P. and C. F.) Ch. 2 (Academic Press, Cambridge, Massachusetts, US, 2016).
Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B. Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci. Lett. 2001;307:77–80. doi: 10.1016/S0304-3940(01)01927-9. PubMed DOI
Neumann S, et al. Mammalian Wnt3a is released on lipoprotein particles. Traffic. 2009;10:334–343. doi: 10.1111/j.1600-0854.2008.00872.x. PubMed DOI
Harada T, et al. Wnt5b-associated exosomes promote cancer cell migration and proliferation. Cancer Sci. 2017;108:42–52. doi: 10.1111/cas.13109. PubMed DOI PMC
Jairam, V. Pathophysiology of Lipoprotein Oxidation. in Lipoproteins: Role in Health and Diseases (ed. Uchida, K.). Ch. 16 (IntechOpen, London, UK 2012).
Ladu MJO, et al. Lipoproteins in the central nervous system. Ann. N. Y. Acad. Sci. 2006;903:167–175. doi: 10.1111/j.1749-6632.2000.tb06365.x. PubMed DOI
Kitazawa T, et al. Characterization of the amino acid transport of new immortalized choroid plexus epithelial cell lines: a novel in vitro system for investigating transport functions at the blood-cerebrospinal fluid barrier. Pharm. Res. 2001;18:16–22. doi: 10.1023/A:1011014424212. PubMed DOI
Heink A, Davidson WS, Swertfeger DK, Lu LJ, Shah AS. A comparison of methods to enhance protein detection of lipoproteins by mass spectrometry. J. Proteome Res. 2015;14:2943–2950. doi: 10.1021/acs.jproteome.5b00270. PubMed DOI PMC
Huang X, et al. Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc. Natl Acad. Sci. USA. 2010;107:8422–8427. doi: 10.1073/pnas.0911838107. PubMed DOI PMC
Davey CF, Moens CB. Planar cell polarity in moving cells: think globally, act locally. Development. 2017;144:187–200. doi: 10.1242/dev.122804. PubMed DOI PMC
Valacchi G, Sticozzi C, Lim Y, Pecorelli A. Scavenger receptor class B type I: a multifunctional receptor. Ann. N. Y. Acad. Sci. 2011;1229:E1–E7. doi: 10.1111/j.1749-6632.2011.06205.x. PubMed DOI
Zywitza V, Misios A, Bunatyan L, Willnow TE, Rajewsky N. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis. Cell Rep. 2018;25:2457–2469.e8. doi: 10.1016/j.celrep.2018.11.003. PubMed DOI
Simon-Chazottes D, et al. Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics. 2006;87:673–677. doi: 10.1016/j.ygeno.2006.01.007. PubMed DOI
Li Y, et al. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am. J. Hum. Genet. 2010;86:696–706. doi: 10.1016/j.ajhg.2010.03.004. PubMed DOI PMC
Arenas E. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson’s disease. J. Mol. Cell Biol. 2014;6:42–53. doi: 10.1093/jmcb/mju001. PubMed DOI
Endo M, Minami Y. Diverse roles for the ror-family receptor tyrosine kinases in neurons and glial cells during development and repair of the nervous system. Dev. Dyn. 2018;247:24–32. doi: 10.1002/dvdy.24515. PubMed DOI
Andersson, E. R. et al. Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo. PLoS One10.1371/journal.pone.0003517 (2008). PubMed PMC
Subashini, C. et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci. Rep. 10.1038/srep42523. (2017). PubMed PMC
Andersson ER, et al. Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells. Proc. Natl. Acad. Sci. 2013;110:602–610. doi: 10.1073/pnas.1208524110. PubMed DOI PMC
Koch S, et al. Characterization of four lipoprotein classes in human cerebrospinal fluid. J. Lipid Res. 2001;42:1143–1151. PubMed
Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J. Biol. Chem. 1987;262:14352–14360. PubMed
Zappaterra MD, et al. A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J. Proteome Res. 2007;6:3537–3548. doi: 10.1021/pr070247w. PubMed DOI
Parada C, Gato Aacute, Bueno D. Mammalian embryonic cerebrospinal fluid proteome has greater apolipoprotein and enzyme pattern complexity than the avian proteome. J. Proteome Res. 2005;4:2420–2428. doi: 10.1021/pr050213t. PubMed DOI
Stukas, S. et al. Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus. J. Am. Heart Assoc. 10.1161/JAHA.114.001156 (2018). PubMed PMC
Johansson, P. A. The choroid plexuses and their impact on developmental neurogenesis. Front. Neurosci. 10.3389/fnins.2014.00340. (2014). PubMed PMC
Ananyeva N, Tjurmin A, Saenko E, Haudenschild C. Low density lipoproteins interact with acidic fibroblast growth factor and modify its function. Arterioscler. Thromb. Vasc. Biol. 2003;23:601–607. doi: 10.1161/01.ATV.0000065193.27491.5B. PubMed DOI
Riwanto M, et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease. Circulation. 2013;127:891–904. doi: 10.1161/CIRCULATIONAHA.112.108753. PubMed DOI
Palm, W. et al. Secretion and Signaling Activities of Lipoprotein-Associated Hedgehog and Non-Sterol-Modified Hedgehog in Flies and Mammals. PLOS Biol. 10.1371/journal.pbio.1001505. (2013). PubMed PMC
Parada C, Escolà-Gil JC, Bueno D. Low-density lipoproteins from embryonic cerebrospinal fluid are required for neural differentiation. J. Neurosci. Res. 2008;86:2674–2684. doi: 10.1002/jnr.21724. PubMed DOI
Pataki CA, Couchman JR, Brábek J. Wnt signaling cascades and the roles of syndecan proteoglycans. J. Histochem. Cytochem. 2015;63:465–480. doi: 10.1369/0022155415586961. PubMed DOI
Stanford KI, et al. Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J. Clin. Invest. 2009;119:3236–3245. PubMed PMC
Boyanovsky BB, Shridas P, Simons M, van der Westhuyzen DR, Webb NR. Syndecan-4 mediates macrophage uptake of group V secretory phospholipase A2-modified LDL. J. Lipid Res. 2009;50:641–650. doi: 10.1194/jlr.M800450-JLR200. PubMed DOI PMC
Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 1999;126:1211–1223. PubMed
Ryu YK, Collins SE, Ho HYH, Zhao H, Kuruvilla R. An autocrine Wnt5a-Ror signaling loop mediates sympathetic target innervation. Dev. Biol. 2013;377:79–89. doi: 10.1016/j.ydbio.2013.02.013. PubMed DOI PMC
Muthusamy N, Vijayakumar A, Cheng G, Jr, Ghashghaei HT. A knock-in Foxj1(CreERT2::GFP) mouse for recombination in epithelial cells with motile cilia. Genesis. 2014;52:350–358. doi: 10.1002/dvg.22753. PubMed DOI PMC
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 10.1038/nn.2467. (2009). PubMed PMC
Théry C, Clayton A, Amigorena S, Raposo G. Isolation and characterization of exosomes from cell culture supernatants. Curr. Protoc. Cell. Biol. 2006;supplement:1–29. PubMed
Camus MC, Chapman MJ, Forgez P, Laplaud PM. Distribution and characterization of the serum lipoproteins and apoproteins in the mouse, Mus musculus. J. Lipid Res. 1983;24:1210–1228. PubMed
Lein ES, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2006;445:168–176. doi: 10.1038/nature05453. PubMed DOI
Diez-Roux, G. et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 10.1371/journal.pbio.1000582. (2011). PubMed PMC
Vizcaíno JA, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014;32:223–226. doi: 10.1038/nbt.2839. PubMed DOI PMC
Regulation of choroid plexus development and its functions
A cellular and spatial map of the choroid plexus across brain ventricles and ages
MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus
Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS