Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007381
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32635478
PubMed Central
PMC7369786
DOI
10.3390/ijms21134760
PII: ijms21134760
Knihovny.cz E-zdroje
- Klíčová slova
- cerebrospinal fluid, choroid plexus, secretion,
- MeSH
- biologický transport fyziologie MeSH
- hematoencefalická bariéra metabolismus MeSH
- lidé MeSH
- plexus chorioideus metabolismus MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.
Zobrazit více v PubMed
Carpenter E.M. The Choroid Plexus and Cerebrospinal Fluid: Emerging Roles in CNS Development, Maintenance, and Disease Progression. Academic Press; San Diego, CA, USA: 2016. Chapter 2-Development of Brain Ventricles and Choroid Plexus; pp. 15–27.
Fame R.M., Cortés-Campos C., Sive H.L. Brain Ventricular System and Cerebrospinal Fluid Development and Function: Light at the End of the Tube. BioEssays. 2020;42:1900186. doi: 10.1002/bies.201900186. PubMed DOI
Hindle S.J., Munji R.N., Dolghih E., Gaskins G., Orng S., Ishimoto H., Soung A., DeSalvo M., Kitamoto T., Keiser M.J., et al. Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous Steroid Partitioning and Behavior. Cell Rep. 2017;21:1304–1316. doi: 10.1016/j.celrep.2017.10.026. PubMed DOI PMC
Ghersi-Egea J.F., Strazielle N., Catala M., Silva-Vargas V., Doetsch F., Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018;135:337–361. doi: 10.1007/s00401-018-1807-1. PubMed DOI
Lehtinen M.K., Zappaterra M.W., Chen X., Yang Y.J., Hill A.D., Lun M., Maynard T., Gonzalez D., Kim S., Ye P., et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. 2011;69:893–905. doi: 10.1016/j.neuron.2011.01.023. PubMed DOI PMC
Silva-Vargas V., Maldonado-Soto A.R., Mizrak D., Codega P., Doetsch F. Age-Dependent Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells. Cell Stem Cell. 2016;19:643–652. doi: 10.1016/j.stem.2016.06.013. PubMed DOI
Fame R.M., Lehtinen M.K. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev. Cell. 2020;52:261–275. doi: 10.1016/j.devcel.2020.01.027. PubMed DOI
Bill B.R., Korzh V. Choroid plexus in developmental and evolutionary perspective. Front. Neurosci. 2014;8:363. doi: 10.3389/fnins.2014.00363. PubMed DOI PMC
Johansson P.A. The choroid plexuses and their impact on developmental neurogenesis. Front. Neurosci. 2014;8 doi: 10.3389/fnins.2014.00340. PubMed DOI PMC
Stukas S., Robert J., Lee M., Kulic I., Carr M., Tourigny K., Fan J., Namjoshi D., Lemke K., DeValle N., et al. Intravenously injected human apolipoprotein A-I rapidly enters the central nervous system via the choroid plexus. J. Am. Heart Assoc. 2014;3:e001156. doi: 10.1161/JAHA.114.001156. PubMed DOI PMC
Bueno D., Garcia-Fernàndez J. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: An open research field with implications for brain development and function. Fluids Barriers CNS. 2016;13:5. doi: 10.1186/s12987-016-0029-y. PubMed DOI PMC
Ghersi-Egea J.-F., Babikian A., Blondel S., Strazielle N. Changes in the cerebrospinal fluid circulatory system of the developing rat: Quantitative volumetric analysis and effect on blood-CSF permeability interpretation. Fluids Barriers CNS. 2015;12:8. doi: 10.1186/s12987-015-0001-2. PubMed DOI PMC
Møllgård K., Dziegielewska K.M., Holst C.B., Habgood M.D., Saunders N.R. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci. Rep. 2017;7:11603. doi: 10.1038/s41598-017-11596-0. PubMed DOI PMC
Chau K.F., Shannon M.L., Fame R.M., Fonseca E., Mullan H., Johnson M.B., Sendamarai A.K., Springel M.W., Laurent B., Lehtinen M.K. Downregulation of ribosome biogenesis during early forebrain development. Elife. 2018;7:e36998. doi: 10.7554/eLife.36998. PubMed DOI PMC
Fame R.M., Shannon M.L., Chau K.F., Head J.P., Lehtinen M.K. A concerted metabolic shift in early forebrain alters the CSF proteome and depends on MYC downregulation for mitochondrial maturation. Development. 2019;146:dev182857. doi: 10.1242/dev.182857. PubMed DOI PMC
Møllgård K., Balslev Y., Lauritzen B., Saunders N.R. Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: A CSF-brain barrier. J. Neurocytol. 1987;16:433–444. doi: 10.1007/BF01668498. PubMed DOI
Lamus F., Martín C., Carnicero E., Moro J.A., Fernández J.M.F., Mano A., Gato Á., Alonso M.I. FGF2/EGF contributes to brain neuroepithelial precursor proliferation and neurogenesis in rat embryos: The involvement of embryonic cerebrospinal fluid. Dev. Dyn. 2020;249:141–153. doi: 10.1002/dvdy.135. PubMed DOI
Marzesco A.-M., Janich P., Wilsch-Bräuninger M., Dubreuil V., Langenfeld K., Corbeil D., Huttner W.B. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J. Cell Sci. 2005;118:2849–2858. doi: 10.1242/jcs.02439. PubMed DOI
Whish S., Dziegielewska K.M., Møllgård K., Noor N.M., Liddelow S.A., Habgood M.D., Richardson S.J., Saunders N.R. The inner CSF-brain barrier: Developmentally controlled access to the brain via intercellular junctions. Front. Neurosci. 2015;9:16. doi: 10.3389/fnins.2015.00016. PubMed DOI PMC
Chang J.T., Sive H. An assay for permeability of the zebrafish embryonic neuroepithelium. J. Vis. Exp. 2012:e4242. doi: 10.3791/4242. PubMed DOI PMC
Spector R., Keep R.F., Robert Snodgrass S., Smith Q.R., Johanson C.E. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp. Neurol. 2015;267:78–86. doi: 10.1016/j.expneurol.2015.02.032. PubMed DOI
Lun M.P., Monuki E.S., Lehtinen M.K. Development and functions of the choroid plexus–cerebrospinal fluid system. Nat. Rev. Neurosci. 2015;16:445–457. doi: 10.1038/nrn3921. PubMed DOI PMC
Arbeille E., Reynaud F., Sanyas I., Bozon M., Kindbeiter K., Causeret F., Pierani A., Falk J., Moret F., Castellani V. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat. Commun. 2015;6:6366. doi: 10.1038/ncomms7366. PubMed DOI
Bátiz L.F., Jiménez A.J., Guerra M., Rodríguez-Pérez L.M., Toledo C.D., Vio K., Páez P., Pérez-Fígares J.M., Rodríguez E.M. New ependymal cells are born postnatally in two discrete regions of the mouse brain and support ventricular enlargement in hydrocephalus. Acta Neuropathol. 2011;121:721–735. doi: 10.1007/s00401-011-0799-x. PubMed DOI
Alonso M.I., Lamus F., Carnicero E., Moro J.A., de la Mano A., Fernández J.M.F., Desmond M.E., Gato A. Embryonic Cerebrospinal Fluid Increases Neurogenic Activity in the Brain Ventricular-Subventricular Zone of Adult Mice. Front. Neuroanat. 2017;11:124. doi: 10.3389/fnana.2017.00124. PubMed DOI PMC
Parada C., Martín C., Alonso M.I., Moro J.A., Bueno D., Gato A. Embryonic cerebrospinal fluid collaborates with the isthmic organizer to regulate mesencephalic gene expression. J. Neurosci. Res. 2005;82:333–345. doi: 10.1002/jnr.20618. PubMed DOI
Zappaterra M.D., Lisgo S.N., Lindsay S., Gygi S.P., Walsh C.A., Ballif B.A. A Comparative Proteomic Analysis of Human and Rat Embryonic Cerebrospinal Fluid. J. Proteome Res. 2007;6:3537–3548. doi: 10.1021/pr070247w. PubMed DOI
Chang J.T., Lehtinen M.K., Sive H. Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway. Dev. Neurobiol. 2016;76:75–92. doi: 10.1002/dneu.22300. PubMed DOI PMC
Thouvenin O., Keiser L., Cantaut-Belarif Y., Carbo-Tano M., Verweij F., Jurisch-Yaksi N., Bardet P.-L., van Niel G., Gallaire F., Wyart C. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. Elife. 2020;9:e47699. doi: 10.7554/eLife.47699. PubMed DOI PMC
Baird G.S., Nelson S.K., Keeney T.R., Stewart A., Williams S., Kraemer S., Peskind E.R., Montine T.J. Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am. J. Pathol. 2012;180:446–456. doi: 10.1016/j.ajpath.2011.10.024. PubMed DOI PMC
Chau K.F., Springel M.W., Broadbelt K.G., Park H., Topal S., Lun M.P., Mullan H., Maynard T., Steen H., LaMantia A.S., et al. Progressive Differentiation and Instructive Capacities of Amniotic Fluid and Cerebrospinal Fluid Proteomes following Neural Tube Closure. Dev. Cell. 2015;35:789–802. doi: 10.1016/j.devcel.2015.11.015. PubMed DOI PMC
Petrik D., Myoga M.H., Grade S., Gerkau N.J., Pusch M., Rose C.R., Grothe B., Götz M. Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner. Cell Stem Cell. 2018;22:865–878. doi: 10.1016/j.stem.2018.04.016. PubMed DOI
Fultz N.E., Bonmassar G., Setsompop K., Stickgold R.A., Rosen B.R., Polimeni J.R., Lewis L.D. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366:628–631. doi: 10.1126/science.aax5440. PubMed DOI PMC
Davson H., Domer F.R., Hollingsworth J.R. The mechanism of drainage of the cerebrospinal fluid. Brain. 1973;96:329–336. doi: 10.1093/brain/96.2.329. PubMed DOI
Iliff J.J., Wang M., Liao Y., Plogg B.A., Peng W., Gundersen G.A., Benveniste H., Vates G.E., Deane R., Goldman S.A., et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci. Transl. Med. 2012;4:147ra111. doi: 10.1126/scitranslmed.3003748. PubMed DOI PMC
Achariyar T.M., Li B., Peng W., Verghese P.B., Shi Y., McConnell E., Benraiss A., Kasper T., Song W., Takano T., et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol. Neurodegener. 2016;11:74. doi: 10.1186/s13024-016-0138-8. PubMed DOI PMC
Baruch K., Deczkowska A., David E., Castellano J.M., Miller O., Kertser A., Berkutzki T., Barnett-Itzhaki Z., Bezalel D., Wyss-Coray T., et al. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science. 2014;346:89–93. doi: 10.1126/science.1252945. PubMed DOI PMC
Arnaud K., Moreira V.O., Vincent J., Dallerac G., Le Poupon C., Richter M., Müller U.C., Rondi-Reig L., Prochiantz A., Di Nardo A.A. Choroid plexus APP regulates adult brain proliferation and animal behavior. bioRxiv. 2020:734103. doi: 10.1101/734103. PubMed DOI PMC
Janelidze S., Stomrud E., Smith R., Palmqvist S., Mattsson N., Airey D.C., Proctor N.K., Chai X., Shcherbinin S., Sims J.R., et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun. 2020;11:1683. doi: 10.1038/s41467-020-15436-0. PubMed DOI PMC
Miller A.M., Shah R.H., Pentsova E.I., Pourmaleki M., Briggs S., Distefano N., Zheng Y., Skakodub A., Mehta S.A., Campos C., et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565:654–658. doi: 10.1038/s41586-019-0882-3. PubMed DOI PMC
Thomas T., Dziadek M. Capacity to form choroid plexus-like cells in vitro is restricted to specific regions of the mouse neural ectoderm. Development. 1993;117:253–262. PubMed
Currle D.S., Cheng X., Hsu C., Monuki E.S. Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development. 2005;132:3549–3559. doi: 10.1242/dev.01915. PubMed DOI
Hunter N.L., Dymecki S.M. Molecularly and temporally separable lineages form the hindbrain roof plate and contribute differentially to the choroid plexus. Development. 2007;134:3449–3460. doi: 10.1242/dev.003095. PubMed DOI PMC
Awatramani R., Soriano P., Rodriguez C., Mai J.J., Dymecki S.M. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat. Genet. 2003;35:70–75. doi: 10.1038/ng1228. PubMed DOI
Liddelow S.A., Temple S., Møllgård K., Gehwolf R., Wagner A., Bauer H., Bauer H.-C., Phoenix T.N., Dziegielewska K.M., Saunders N.R. Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach. PLoS ONE. 2012;7:e33554. doi: 10.1371/annotation/2a9099a5-688b-4def-95a7-6ac13b10d096. PubMed DOI PMC
Damkier H.H., Brown P.D., Praetorius J. Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiol. Rev. 2013;93:1847–1892. doi: 10.1152/physrev.00004.2013. PubMed DOI
Nielsen C.M., Dymecki S.M. Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev. Biol. 2010;340:430–437. doi: 10.1016/j.ydbio.2010.01.032. PubMed DOI PMC
Wilting J., Christ B. An experimental and ultrastructural study on the development of the avian choroid plexus. Cell Tissue Res. 1989;255:487–494. doi: 10.1007/BF00218783. PubMed DOI
Dani N., Herbst R.H., Habib N., Head J., Dionne D., Nguyen L., McCabe C., Cui J., Shipley F.B., Jang A., et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. bioRxiv. 2019:627539. doi: 10.1101/627539. PubMed DOI PMC
Prasongchean W., Vernay B., Asgarian Z., Jannatul N., Ferretti P. The neural milieu of the developing choroid plexus: Neural stem cells, neurons and innervation. Front. Neurosci. 2015;9:103. doi: 10.3389/fnins.2015.00103. PubMed DOI PMC
Orešković D. The controversy on choroid plexus function in cerebrospinal fluid production in humans: How long different views could be neglected? Croat. Med. J. 2015;56:306–310. doi: 10.3325/cmj.2015.56.306. PubMed DOI PMC
Kratzer I., Strazielle N., Saudrais E., Mönkkönen K., Malleval C., Blondel S., Ghersi-Egea J.-F. Glutathione Conjugation at the Blood-CSF Barrier Efficiently Prevents Exposure of the Developing Brain Fluid Environment to Blood-Borne Reactive Electrophilic Substances. J. Neurosci. 2018;38:3466–3479. doi: 10.1523/JNEUROSCI.2967-17.2018. PubMed DOI PMC
Saudrais E., Strazielle N., Ghersi-Egea J.-F. Choroid plexus glutathione peroxidases are instrumental in protecting the brain fluid environment from hydroperoxides during postnatal development. Am. J. Physiol. Physiol. 2018;315:C445–C456. doi: 10.1152/ajpcell.00094.2018. PubMed DOI
Strazielle N., Ghersi-Egea J.F. Physiology of Blood–Brain Interfaces in Relation to Brain Disposition of Small Compounds and Macromolecules. Mol. Pharm. 2013;10:1473–1491. doi: 10.1021/mp300518e. PubMed DOI
Thouvenot E., Lafon-Cazal M., Demettre E., Jouin P., Bockaert J., Marin P. The proteomic analysis of mouse choroid plexus secretome reveals a high protein secretion capacity of choroidal epithelial cells. Proteomics. 2006;6:5941–5952. doi: 10.1002/pmic.200600096. PubMed DOI
Guldbrandsen A., Vethe H., Farag Y., Oveland E., Garberg H., Berle M., Myhr K.-M., Opsahl J.A., Barsnes H., Berven F.S. In-depth Characterization of the Cerebrospinal Fluid (CSF) Proteome Displayed Through the CSF Proteome Resource (CSF-PR) Mol. Cell. Proteomics. 2014;13:3152–3163. doi: 10.1074/mcp.M114.038554. PubMed DOI PMC
Keep R.F., Jones H.C. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Dev. Brain Res. 1990;56:47–53. doi: 10.1016/0165-3806(90)90163-S. PubMed DOI
Cornford E.M., Varesi J.B., Hyman S., Damian R.T., Raleigh M.J. Mitochondrial content of choroid plexus epithelium. Exp. Brain Res. 1997;116:399–405. doi: 10.1007/PL00005768. PubMed DOI
Sturrock R.R. A morphological study of the development of the mouse choroid plexus. J. Anat. 1979;129:777–793. PubMed PMC
Lun M.P., Johnson M.B., Broadbelt K.G., Watanabe M., Kang Y.-j., Chau K.F., Springel M.W., Malesz A., Sousa A.M.M., Pletikos M., et al. Spatially Heterogeneous Choroid Plexus Transcriptomes Encode Positional Identity and Contribute to Regional CSF Production. J. Neurosci. 2015;35:4903–4916. doi: 10.1523/JNEUROSCI.3081-14.2015. PubMed DOI PMC
Olstad E.W., Ringers C., Hansen J.N., Wens A., Brandt C., Wachten D., Yaksi E., Jurisch-Yaksi N. Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development. Curr. Biol. 2019;29:229–241.e6. doi: 10.1016/j.cub.2018.11.059. PubMed DOI PMC
Kaiser K., Gyllborg D., Procházka J., Salašová A., Kompaníková P., Molina F.L., Laguna-Goya R., Radaszkiewicz T., Harnoš J., Procházková M., et al. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-09298-4. PubMed DOI PMC
Huang X., Liu J., Ketova T., Fleming J.T., Grover V.K., Cooper M.K., Litingtung Y., Chiang C. Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc. Natl. Acad. Sci. USA. 2010;107:8422–8427. doi: 10.1073/pnas.0911838107. PubMed DOI PMC
Huang X., Ketova T., Fleming J.T., Wang H., Dey S.K., Litingtung Y., Chiang C. Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development. 2009;136:2535–2543. doi: 10.1242/dev.033795. PubMed DOI PMC
Kaiser K., Jang A., Lun M., Prochazka J., Machon O., Prochazkova M., Laurent B., Gyllborg D., van Amerongen R., Kompanikova P., et al. MEIS-WNT5A axis regulates development of 4th ventricle choroid plexus. bioRxiv. 2020 doi: 10.1101/2020.05.07.082370. DOI
Vo H.T., Laszczyk A.M., King G.D. Klotho, the Key to Healthy Brain Aging? Brain Plast. 2018;3:183–194. doi: 10.3233/BPL-170057. PubMed DOI PMC
Semba R.D., Moghekar A.R., Hu J., Sun K., Turner R., Ferrucci L., O’Brien R. Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci. Lett. 2014;558:37–40. doi: 10.1016/j.neulet.2013.10.058. PubMed DOI PMC
Myung J., Schmal C., Hong S., Tsukizawa Y., Rose P., Zhang Y., Holtzman M.J., De Schutter E., Herzel H., Bordyugov G., et al. The choroid plexus is an important circadian clock component. Nat. Commun. 2018;9:1062. doi: 10.1038/s41467-018-03507-2. PubMed DOI PMC
Quintela T., Sousa C., Patriarca F.M., Gonçalves I., Santos C.R.A. Gender associated circadian oscillations of the clock genes in rat choroid plexus. Brain Struct. Funct. 2015;220:1251–1262. doi: 10.1007/s00429-014-0720-1. PubMed DOI
Quintela T., Albuquerque T., Lundkvist G., Carmine Belin A., Talhada D., Gonçalves I., Carro E., Santos C.R.A. The choroid plexus harbors a circadian oscillator modulated by estrogens. Chronobiol. Int. 2018;35:270–279. doi: 10.1080/07420528.2017.1400978. PubMed DOI
Quintela T., Marcelino H., Deery M.J., Feret R., Howard J., Lilley K.S., Albuquerque T., Gonçalves I., Duarte A.C., Santos C.R.A. Sex-Related Differences in Rat Choroid Plexus and Cerebrospinal Fluid: A cDNA Microarray and Proteomic Analysis. J. Neuroendocrinol. 2016;28 doi: 10.1111/jne.12340. PubMed DOI
Cho J., Yu N.-K., Choi J.-H., Sim S.-E., Kang S.J., Kwak C., Lee S.-W., Kim J., Choi D.I., Kim V.N., et al. Multiple repressive mechanisms in the hippocampus during memory formation. Science. 2015;350:82–87. doi: 10.1126/science.aac7368. PubMed DOI
Mathew R.S., Mullan H., Blusztajn J.K., Lehtinen M.K. Comment on “Multiple repressive mechanisms in the hippocampus during memory formation”. Science. 2016;353:453. doi: 10.1126/science.aaf1288. PubMed DOI PMC
Harrison L., Schriever S.C., Feuchtinger A., Kyriakou E., Baumann P., Pfuhlmann K., Messias A.C., Walch A., Tschöp M.H., Pfluger P.T. Fluorescent blood–brain barrier tracing shows intact leptin transport in obese mice. Int. J. Obes. 2019;43:1305–1318. doi: 10.1038/s41366-018-0221-z. PubMed DOI PMC
Lallai V., Grimes N., Fowler J.P., Sequeira P.A., Cartagena P., Limon A., Coutts M., Monuki E.S., Bunney W., Demuro A., et al. Nicotine Acts on Cholinergic Signaling Mechanisms to Directly Modulate Choroid Plexus Function. eNeuro. 2019;6 doi: 10.1523/ENEURO.0051-19.2019. PubMed DOI PMC
Conn P.J., Sanders-Bush E., Hoffman B.J., Hartig P.R. A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc. Natl. Acad. Sci. USA. 1986;83:4086–4088. doi: 10.1073/pnas.83.11.4086. PubMed DOI PMC
Shipley F.B., Dani N., Xu H., Deister C., Cui J., Head J.P., Sadegh C., Fame R.M., Shannon M.L., Flores V.I., et al. Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. Neuron. 2020 doi: 10.2139/ssrn.3554055. PubMed DOI PMC
Liu Y., He X., Li Y., Wang T. Cerebrospinal fluid CD4+ T lymphocyte-derived miRNA-let-7b can enhances the diagnostic performance of Alzheimer’s disease biomarkers. Biochem. Biophys. Res. Commun. 2018;495:1144–1150. doi: 10.1016/j.bbrc.2017.11.122. PubMed DOI
Kivisäkk P., Mahad D.J., Callahan M.K., Trebst C., Tucky B., Wei T., Wu L., Baekkevold E.S., Lassmann H., Staugaitis S.M., et al. Human cerebrospinal fluid central memory CD4+ T cells: Evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl. Acad. Sci. USA. 2003;100:8389–8394. doi: 10.1073/pnas.1433000100. PubMed DOI PMC
Meeker R.B., Poulton W., Markovic-Plese S., Hall C., Robertson K. Protein changes in CSF of HIV-infected patients: Evidence for loss of neuroprotection. J. Neurovirol. 2011;17:258–273. doi: 10.1007/s13365-011-0034-5. PubMed DOI PMC
Kothur K., Wienholt L., Brilot F., Dale R.C. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review. Cytokine. 2016;77:227–237. doi: 10.1016/j.cyto.2015.10.001. PubMed DOI
Louveau A., Herz J., Alme M.N., Salvador A.F., Dong M.Q., Viar K.E., Herod S.G., Knopp J., Setliff J.C., Lupi A.L., et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 2018;21:1380–1391. doi: 10.1038/s41593-018-0227-9. PubMed DOI PMC
Dahm T., Frank F., Adams O., Lindner H.A., Ishikawa H., Weiss C., Schwerk C., Schroten H., Tenenbaum T., Rudolph H. Sequential transmigration of polymorphonuclear cells and naive CD3+ T lymphocytes across the blood-cerebrospinal-fluid barrier in vitro following infection with Echovirus 30. Virus Res. 2017;232:54–62. doi: 10.1016/j.virusres.2017.01.024. PubMed DOI
Marques F., Sousa J.C., Coppola G., Falcao A.M., Rodrigues A.J., Geschwind D.H., Sousa N., Correia-Neves M., Palha J.A. Kinetic Profile of the Transcriptome Changes Induced in the Choroid Plexus by Peripheral Inflammation. J. Cereb. Blood Flow Metab. 2009;29:921–932. doi: 10.1038/jcbfm.2009.15. PubMed DOI
Endo H., Sasaki K., Tonosaki A., Kayama T. Three-dimensional and ultrastructural ICAM-1 distribution in the choroid plexus, arachnoid membrane and dural sinus of inflammatory rats induced by LPS injection in the lateral ventricles. Brain Res. 1998;793:297–301. doi: 10.1016/S0006-8993(98)00042-0. PubMed DOI
Reboldi A., Coisne C., Baumjohann D., Benvenuto F., Bottinelli D., Lira S., Uccelli A., Lanzavecchia A., Engelhardt B., Sallusto F. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 2009;10:514–523. doi: 10.1038/ni.1716. PubMed DOI
Mottahedin A., Joakim Ek C., Truvé K., Hagberg H., Mallard C. Choroid plexus transcriptome and ultrastructure analysis reveals a TLR2-specific chemotaxis signature and cytoskeleton remodeling in leukocyte trafficking. Brain. Behav. Immun. 2019;79:216–227. doi: 10.1016/j.bbi.2019.02.004. PubMed DOI PMC
Mottahedin A., Blondel S., Ek J., Leverin A.-L., Svedin P., Hagberg H., Mallard C., Ghersi-Egea J.-F., Strazielle N. N-acetylcysteine inhibits bacterial lipopeptide-mediated neutrophil transmigration through the choroid plexus in the developing brain. Acta Neuropathol. Commun. 2020;8:4. doi: 10.1186/s40478-019-0877-1. PubMed DOI PMC
Strazielle N., Creidy R., Malcus C., Boucraut J., Ghersi-Egea J.-F. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium. PLoS ONE. 2016;11:e0150945. doi: 10.1371/journal.pone.0150945. PubMed DOI PMC
Strominger I., Elyahu Y., Berner O., Reckhow J., Mittal K., Nemirovsky A., Monsonego A. The Choroid Plexus Functions as a Niche for T-Cell Stimulation Within the Central Nervous System. Front. Immunol. 2018;9:1066. doi: 10.3389/fimmu.2018.01066. PubMed DOI PMC
Demeestere D., Libert C., Vandenbroucke R.E. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov. Today. 2015;20:928–941. doi: 10.1016/j.drudis.2015.05.003. PubMed DOI
Alonso M.I., Gato A. Cerebrospinal fluid and neural stem cell niche control. Neural Regen. Res. 2018;13:1546–1547. doi: 10.4103/1673-5374.237114. PubMed DOI PMC
Ren C., Yin P., Ren N., Wang Z., Wang J., Zhang C., Ge W., Geng D., Wang X. Cerebrospinal fluid-stem cell interactions may pave the path for cell-based therapy in neurological diseases. Stem Cell Res. Ther. 2018;9:66. doi: 10.1186/s13287-018-0807-3. PubMed DOI PMC
Martin C., Alonso M.I., Santiago C., Moro J.A., De la Mano A., Carretero R., Gato A. Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid. Int. J. Dev. Neurosci. 2009;27:733–740. doi: 10.1016/j.ijdevneu.2009.06.002. PubMed DOI
Schwarz N., Hedrich U.B.S., Schwarz H., Harshad P.A., Dammeier N., Auffenberg E., Bedogni F., Honegger J.B., Lerche H., Wuttke T.V., et al. Human Cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures. Sci. Rep. 2017;7:12249. doi: 10.1038/s41598-017-12527-9. PubMed DOI PMC
Xu Q., Bernardo A., Walker D., Kanegawa T., Mahley R.W., Huang Y. Profile and Regulation of Apolipoprotein E (ApoE) Expression in the CNS in Mice with Targeting of Green Fluorescent Protein Gene to the ApoE Locus. J. Neurosci. 2006;26:4985. doi: 10.1523/JNEUROSCI.5476-05.2006. PubMed DOI PMC
Gard A.L., Gavin E., Solodushko V., Pennica D. Cardiotrophin-1 in choroid plexus and the cerebrospinal fluid circulatory system. Neuroscience. 2004;127:43–52. doi: 10.1016/j.neuroscience.2004.03.065. PubMed DOI
Greenwood S., Swetloff A., Wade A.M., Terasaki T., Ferretti P. Fgf2 is expressed in human and murine embryonic choroid plexus and affects choroid plexus epithelial cell behaviour. Cerebrospinal Fluid Res. 2008;5:20. doi: 10.1186/1743-8454-5-20. PubMed DOI PMC
Marques F., Falcao A.M., Sousa J.C., Coppola G., Geschwind D., Sousa N., Correia-Neves M., Palha J.A. Altered Iron Metabolism Is Part of the Choroid Plexus Response to Peripheral Inflammation. Endocrinology. 2009;150:2822–2828. doi: 10.1210/en.2008-1610. PubMed DOI
Tseng L.Y., Brown A.L., Yang Y.W., Romanus J.A., Orlowski C.C., Taylor T., Rechler M.M. The fetal rat binding protein for insulin-like growth factors is expressed in the choroid plexus and cerebrospinal fluid of adult rats. Mol. Endocrinol. 1989;3:1559–1568. doi: 10.1210/mend-3-10-1559. PubMed DOI
Kokovay E., Wang Y., Kusek G., Wurster R., Lederman P., Lowry N., Shen Q., Temple S. VCAM1 Is Essential to Maintain the Structure of the SVZ Niche and Acts as an Environmental Sensor to Regulate SVZ Lineage Progression. Cell Stem Cell. 2012;11:220–230. doi: 10.1016/j.stem.2012.06.016. PubMed DOI
Olauson H., Mencke R., Hillebrands J.-L., Larsson T.E. Tissue expression and source of circulating αKlotho. Bone. 2017;100:19–35. doi: 10.1016/j.bone.2017.03.043. PubMed DOI
Spuch C., Antequera D., Pascual C., Abilleira S., Blanco M., Moreno-Carretero M.J., Romero-López J., Ishida T., Molina J.A., Villarejo A., et al. Soluble Megalin is Reduced in Cerebrospinal Fluid Samples of Alzheimer’s Disease Patients. Front. Cell. Neurosci. 2015;9:134. doi: 10.3389/fncel.2015.00134. PubMed DOI PMC
Quintela T., Gonçalves I., Silva M., Duarte A.C., Guedes P., Andrade K., Freitas F., Talhada D., Albuquerque T., Tavares S., et al. Choroid plexus is an additional source of melatonin in the brain. J. Pineal Res. 2018;65:e12528. doi: 10.1111/jpi.12528. PubMed DOI
Balusu S., Van Wonterghem E., De Rycke R., Raemdonck K., Stremersch S., Gevaert K., Brkic M., Demeestere D., Vanhooren V., Hendrix A., et al. Identification of a novel mechanism of blood–brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol. Med. 2016;8:1162–1183. doi: 10.15252/emmm.201606271. PubMed DOI PMC
Lepko T., Pusch M., Müller T., Schulte D., Ehses J., Kiebler M., Hasler J., Huttner H.B., Vandenbroucke R.E., Vandendriessche C., et al. Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J. 2019;38:e100481. doi: 10.15252/embj.2018100481. PubMed DOI PMC
Delgado A.C., Ferrón S.R., Vicente D., Porlan E., Perez-Villalba A., Trujillo C.M., D’Ocón P., Fariñas I. Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron. 2014;83:572–585. doi: 10.1016/j.neuron.2014.06.015. PubMed DOI
Spatazza J., Lee H.H.C., Di Nardo A.A., Tibaldi L., Joliot A., Hensch T.K., Prochiantz A. Choroid-Plexus-Derived Otx2 Homeoprotein Constrains Adult Cortical Plasticity. Cell Rep. 2013;3:1815–1823. doi: 10.1016/j.celrep.2013.05.014. PubMed DOI PMC
Esteve P., Rueda-Carrasco J., Inés Mateo M., Martin-Bermejo M.J., Draffin J., Pereyra G., Sandonís Á., Crespo I., Moreno I., Aso E., et al. Elevated levels of Secreted-Frizzled-Related-Protein 1 contribute to Alzheimer’s disease pathogenesis. Nat. Neurosci. 2019;22:1258–1268. doi: 10.1038/s41593-019-0432-1. PubMed DOI
Sawamoto K., Wichterle H., Gonzalez-Perez O., Cholfin J.A., Yamada M., Spassky N., Murcia N.S., Garcia-Verdugo J.M., Marin O., Rubenstein J.L.R., et al. New Neurons Follow the Flow of Cerebrospinal Fluid in the Adult Brain. Science. 2006;311:629–632. doi: 10.1126/science.1119133. PubMed DOI
Johansson P.a., Irmler M., Acampora D., Beckers J., Simeone A., Götz M. The transcription factor Otx2 regulates choroid plexus development and function. Development. 2013;140:1055–1066. doi: 10.1242/dev.090860. PubMed DOI
Kato M., Soprano D.R., Makover A., Kato K., Herbert J., Goodman D.S. Localization of immunoreactive transthyretin (prealbumin) and of transthyretin mRNA in fetal and adult rat brain. Differentiation. 1986;31:228–235. doi: 10.1111/j.1432-0436.1986.tb00402.x. PubMed DOI
Moos T., Morgan E.H. Transferrin and Transferrin Receptor Function in Brain Barrier Systems. Cell. Mol. Neurobiol. 2000;20:77–95. doi: 10.1023/A:1006948027674. PubMed DOI PMC
Yang J., Dombrowski S.M., Deshpande A., Krajcir N., Luciano M.G. VEGF/VEGFR-2 changes in frontal cortex, choroid plexus, and CSF after chronic obstructive hydrocephalus. J. Neurol. Sci. 2010;296:39–46. doi: 10.1016/j.jns.2010.06.012. PubMed DOI PMC
Planques A., Oliveira Moreira V., Dubreuil C., Prochiantz A., Di Nardo A.A. OTX2 Signals from the Choroid Plexus to Regulate Adult Neurogenesis. eneuro. 2019;6 doi: 10.1523/ENEURO.0262-18.2019. PubMed DOI PMC
Bernard C., Vincent C., Testa D., Bertini E., Ribot J., Di Nardo A.A., Volovitch M., Prochiantz A. A Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor. PLOS Genet. 2016;12:e1006035. doi: 10.1371/journal.pgen.1006035. PubMed DOI PMC
Wang W.-X., Fardo D.W., Jicha G.A., Nelson P.T. A Customized Quantitative PCR MicroRNA Panel Provides a Technically Robust Context for Studying Neurodegenerative Disease Biomarkers and Indicates a High Correlation Between Cerebrospinal Fluid and Choroid Plexus MicroRNA Expression. Mol. Neurobiol. 2017;54:8191–8202. doi: 10.1007/s12035-016-0316-2. PubMed DOI PMC
Shu P., Wu C., Liu W., Ruan X., Liu C., Hou L., Zeng Y., Fu H., Wang M., Chen P., et al. The spatiotemporal expression pattern of microRNAs in the developing mouse nervous system. J. Biol. Chem. 2019;294:3444–3453. doi: 10.1074/jbc.RA118.004390. PubMed DOI PMC
Cernilogar F.M., Di Giaimo R., Rehfeld F., Cappello S., Lie D.C. RNA interference machinery-mediated gene regulation in mouse adult neural stem cells. BMC Neurosci. 2015;16:60. doi: 10.1186/s12868-015-0198-7. PubMed DOI PMC
Grapp M., Wrede A., Schweizer M., Hüwel S., Galla H.-J., Snaidero N., Simons M., Bückers J., Low P.S., Urlaub H., et al. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat. Commun. 2013;4:2123. doi: 10.1038/ncomms3123. PubMed DOI
Carro E., Spuch C., Trejo J.L., Antequera D., Torres-Aleman I. Choroid Plexus Megalin Is Involved in Neuroprotection by Serum Insulin-Like Growth Factor I. J. Neurosci. 2005;25:10884–10893. doi: 10.1523/JNEUROSCI.2909-05.2005. PubMed DOI PMC
Feliciano D.M., Zhang S., Nasrallah C.M., Lisgo S.N., Bordey A. Embryonic cerebrospinal fluid nanovesicles carry evolutionarily conserved molecules and promote neural stem cell amplification. PLoS ONE. 2014;9:e88810. doi: 10.1371/journal.pone.0088810. PubMed DOI PMC
Bachy I., Kozyraki R., Wassef M. The particles of the embryonic cerebrospinal fluid: How could they influence brain development? Brain Res. Bull. 2008;75:289–294. doi: 10.1016/j.brainresbull.2007.10.010. PubMed DOI
Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. doi: 10.1126/science.aau6977. PubMed DOI PMC
Ciregia F., Urbani A., Palmisano G. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases. Front. Mol. Neurosci. 2017;10:276. doi: 10.3389/fnmol.2017.00276. PubMed DOI PMC
Thompson A.G., Gray E., Mager I., Fischer R., Thézénas M.-L., Charles P.D., Talbot K., El Andaloussi S., Kessler B.M., Wood M., et al. UFLC-Derived CSF Extracellular Vesicle Origin and Proteome. Proteomics. 2018;18:1800257. doi: 10.1002/pmic.201800257. PubMed DOI
Dos Santos M.C.T., Barreto-Sanz M.A., Correia B.R.S., Bell R., Widnall C., Perez L.T., Berteau C., Schulte C., Scheller D., Berg D., et al. miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget. 2018;9:17455. doi: 10.18632/oncotarget.24736. PubMed DOI PMC
Raoof R., Jimenez-Mateos E.M., Bauer S., Tackenberg B., Rosenow F., Lang J., Onugoren M.D., Hamer H., Huchtemann T., Körtvélyessy P., et al. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci. Rep. 2017;7:3328. doi: 10.1038/s41598-017-02969-6. PubMed DOI PMC
Tietje A., Maron K.N., Wei Y., Feliciano D.M. Cerebrospinal Fluid Extracellular Vesicles Undergo Age Dependent Declines and Contain Known and Novel Non-coding RNAs. PLoS ONE. 2014;9:e113116. doi: 10.1371/journal.pone.0113116. PubMed DOI PMC
Coulter M.E., Dorobantu C.M., Lodewijk G.A., Delalande F., Cianferani S., Ganesh V.S., Smith R.S., Lim E.T., Xu C.S., Pang S., et al. The ESCRT-III Protein CHMP1A Mediates Secretion of Sonic Hedgehog on a Distinctive Subtype of Extracellular Vesicles. Cell Rep. 2018;24:973–986.e8. doi: 10.1016/j.celrep.2018.06.100. PubMed DOI PMC
O’Hara B.A., Morris-Love J., Gee G.V., Haley S.A., Atwood W.J. JC Virus infected choroid plexus epithelial cells produce extracellular vesicles that infect glial cells independently of the virus attachment receptor. PLOS Pathog. 2020;16:e1008371. doi: 10.1371/journal.ppat.1008371. PubMed DOI PMC
Kwon Y., Nukala S.B., Srivastava S., Miyamoto H., Ismail N.I., Ong S.-B., Lee W.H., Ong S.-G. Exosomes Facilitate Transmission of SARS-CoV-2 Genome into Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. bioRxiv. 2020 doi: 10.1101/2020.05.14.093583. DOI
Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J., Sordillo E.M., Fowkes M. Central Nervous System Involvement by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) J. Med. Virol. 2020;92:699–702. doi: 10.1002/jmv.25915. PubMed DOI PMC
Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J., Ueno M., Sakata H., Kondo K., Myose N., et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020;94:55–58. doi: 10.1016/j.ijid.2020.03.062. PubMed DOI PMC
Chen R., Wang K., Yu J., Howard D., French L., Chen Z., Wen C., Xu Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. bioRxiv. 2020 doi: 10.1101/2020.04.07.030650. PubMed DOI PMC
Wang H., Eckel R.H. What are lipoproteins doing in the brain? Trends Endocrinol. Metab. 2014;25:8–14. doi: 10.1016/j.tem.2013.10.003. PubMed DOI PMC
Feingold K.R., Grunfeld C. Introduction to Lipids and Lipoproteins. In: eingold K.R., Anawalt B., Boyce A., Chrousos G., Dungan K., Grossman A., Hershman J.M., Kaltsas G., Koch C., Kopp P., editors. Endotext. South Dartmouth (MA); Dartmouth, MA, USA: 2018.
Kuai R., Li D., Chen Y.E., Moon J.J., Schwendeman A. High-Density Lipoproteins: Nature’s Multifunctional Nanoparticles. ACS Nano. 2016;10:3015–3041. doi: 10.1021/acsnano.5b07522. PubMed DOI PMC
Ladu M.J.O., Reardon C., Van Eldik L., Fagan A.M., BU G., Holtzman D., Getz G.S. Lipoproteins in the Central Nervous System. Ann. N. Y. Acad. Sci. 2006;903:167–175. doi: 10.1111/j.1749-6632.2000.tb06365.x. PubMed DOI
LaDu M.J., Gilligan S.M., Lukens J.R., Cabana V.G., Reardon C.A., Van Eldik L.J., Holtzman D.M. Nascent Astrocyte Particles Differ from Lipoproteins in CSF. J. Neurochem. 1998;70:2070–2081. doi: 10.1046/j.1471-4159.1998.70052070.x. PubMed DOI
Marques F., Sousa J.C., Coppola G., Gao F., Puga R., Brentani H., Geschwind D.H., Sousa N., Correia-Neves M., Palha J.A. Transcriptome signature of the adult mouse choroid plexus. Fluids Barriers CNS. 2011;8:10. doi: 10.1186/2045-8118-8-10. PubMed DOI PMC
Koch M., Furtado J.D., Falk K., Leypoldt F., Mukamal K.J., Jensen M.K. Apolipoproteins and their subspecies in human cerebrospinal fluid and plasma. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. 2017;6:182–187. doi: 10.1016/j.dadm.2017.01.007. PubMed DOI PMC
Vance J.E., Hayashi H. Formation and function of apolipoprotein E-containing lipoproteins in the nervous system. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids. 2010;1801:806–818. doi: 10.1016/j.bbalip.2010.02.007. PubMed DOI
Fujiyoshi M., Ohtsuki S., Hori S., Tachikawa M., Terasaki T. 24S-hydroxycholesterol induces cholesterol release from choroid plexus epithelial cells in an apical- and apoE isoform-dependent manner concomitantly with the induction of ABCA1 and ABCG1 expression. J. Neurochem. 2007;100:968–978. doi: 10.1111/j.1471-4159.2006.04240.x. PubMed DOI
Tachikawa M., Watanabe M., Hori S., Fukaya M., Ohtsuki S., Asashima T., Terasaki T. Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J. Neurochem. 2005;95:294–304. doi: 10.1111/j.1471-4159.2005.03369.x. PubMed DOI
Parada C., Gato Á., Bueno D. Mammalian embryonic cerebrospinal fluid proteome has greater apolipoprotein and enzyme pattern complexity than the avian proteome. J. Proteome Res. 2005;4:2420–2428. doi: 10.1021/pr050213t. PubMed DOI
Flowers S.A., Grant O.C., Woods R.J., Rebeck G.W. O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology. 2019;30:74–85. doi: 10.1093/glycob/cwz084. PubMed DOI PMC
Parada C., Escolà-Gil J.C., Bueno D. Low-density lipoproteins from embryonic cerebrospinal fluid are required for neural differentiation. J. Neurosci. Res. 2008;86:2674–2684. doi: 10.1002/jnr.21724. PubMed DOI
Bahrami A., Barreto G.E., Lombardi G., Pirro M., Sahebkar A. Emerging roles for high-density lipoproteins in neurodegenerative disorders. BioFactors. 2019;45:725–739. doi: 10.1002/biof.1541. PubMed DOI
Palm W., Swierczynska M.M., Kumari V., Ehrhart-Bornstein M., Bornstein S.R., Eaton S. Secretion and Signaling Activities of Lipoprotein-Associated Hedgehog and Non-Sterol-Modified Hedgehog in Flies and Mammals. PLoS Biol. 2013;11 doi: 10.1371/journal.pbio.1001505. PubMed DOI PMC
Natalya A., Alexey T., Evgueni S., Christian H. Low Density Lipoproteins Interact With Acidic Fibroblast Growth Factor and Modify Its Function. Arterioscler. Thromb. Vasc. Biol. 2003;23:601–607. doi: 10.1161/01.ATV.0000065193.27491.5B. PubMed DOI
Raha-Chowdhury R., Henderson J.W., Raha A.A., Vuono R., Bickerton A., Jones E., Fincham R., Allinson K., Holland A., Zaman S.H. Choroid Plexus Acts as Gatekeeper for TREM2, Abnormal Accumulation of ApoE, and Fibrillary Tau in Alzheimer’s Disease and in Down Syndrome Dementia. J. Alzheimers. Dis. 2019;69:91–109. doi: 10.3233/JAD-181179. PubMed DOI PMC
Yeh F.L., Wang Y., Tom I., Gonzalez L.C., Sheng M. TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. Neuron. 2016;91:328–340. doi: 10.1016/j.neuron.2016.06.015. PubMed DOI
Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011;13:423–433. doi: 10.1038/ncb2210. PubMed DOI PMC
Mihara E., Hirai H., Yamamoto H., Tamura-Kawakami K., Matano M., Kikuchi A., Sato T., Takagi J. Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin. Elife. 2016;5 doi: 10.7554/eLife.11621. PubMed DOI PMC
Jerkovic L., Voegele A.F., Chwatal S., Kronenberg F., Radcliffe C.M., Wormald M.R., Lobentanz E.M., Ezeh B., Eller P., Dejori N., et al. Afamin Is a Novel Human Vitamin E-Binding Glycoprotein Characterization and In Vitro Expression. J. Proteome Res. 2005;4:889–899. doi: 10.1021/pr0500105. PubMed DOI
Nakato H., Li J.-P. International Review of Cell and Molecular Biology. Vol. 325. Academic Press; Cambridge, MA, USA: Chapter Seven-Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models; pp. 275–293. PubMed
Cartier L., García L., Kettlun A.M., Castañeda P., Collados L., Va’squez F., Giraudon P., Belin M.F., Valenzuela M.A. Extracellular matrix protein expression in cerebrospinal fluid from patients with tropical spastic paraparesis associated with HTLV-I and Creutzfeldt-Jakob disease. Scand. J. Clin. Lab. Invest. 2004;64:101–107. doi: 10.1080/00365510410004308. PubMed DOI
Lugert S., Kremer T., Jagasia R., Herrmann A., Aigner S., Giachino C., Mendez-David I., Gardier A.M., Carralot J.P., Meistermann H., et al. Glypican-2 levels in cerebrospinal fluid predict the status of adult hippocampal neurogenesis. Sci. Rep. 2017;7:46543. doi: 10.1038/srep46543. PubMed DOI PMC
Eugster C., Panáková D., Mahmoud A., Eaton S. Lipoprotein-Heparan Sulfate Interactions in the Hh Pathway. Dev. Cell. 2007;13:57–71. doi: 10.1016/j.devcel.2007.04.019. PubMed DOI
Elliott D.A., Weickert C.S., Garner B. Apolipoproteins in the brain: Implications for neurological and psychiatric disorders. Clin. Lipidol. 2010;5:555–573. doi: 10.2217/clp.10.37. PubMed DOI PMC
Safina D., Schlitt F., Romeo R., Pflanzner T., Pietrzik C.U., Narayanaswami V., Edenhofer F., Faissner A. Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation. Glia. 2016;64:1363–1380. doi: 10.1002/glia.23009. PubMed DOI PMC
Rauch J.N., Luna G., Guzman E., Audouard M., Challis C., Sibih Y.E., Leshuk C., Hernandez I., Wegmann S., Hyman B.T., et al. LRP1 is a master regulator of tau uptake and spread. Nature. 2020;580:381–385. doi: 10.1038/s41586-020-2156-5. PubMed DOI PMC
Drews A., De S., Flagmeier P., Wirthensohn D.C., Chen W.-H., Whiten D.R., Rodrigues M., Vincke C., Muyldermans S., Paterson R.W., et al. Inhibiting the Ca(2+) Influx Induced by Human CSF. Cell Rep. 2017;21:3310–3316. doi: 10.1016/j.celrep.2017.11.057. PubMed DOI PMC
Golabek A., Marques M.A., Lalowski M., Wisniewski T. Amyloid β binding proteins in vitro and in normal human cerebrospinal fluid. Neurosci. Lett. 1995;191:79–82. doi: 10.1016/0304-3940(95)11565-7. PubMed DOI
Johansson P., Almqvist E.G., Bjerke M., Wallin A., Johansson J.O., Andreasson U., Blennow K., Zetterberg H., Svensson J. Reduced Cerebrospinal Fluid Concentration of Apolipoprotein A-I in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2017;59:1017–1026. doi: 10.3233/JAD-170226. PubMed DOI
Fernández-de Retana S., Montañola A., Marazuela P., De La Cuesta M., Batlle A., Fatar M., Grudzenski S., Montaner J., Hernández-Guillamon M. Intravenous treatment with human recombinant ApoA-I Milano reduces beta amyloid cerebral deposition in the APP23-transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging. 2017;60:116–128. doi: 10.1016/j.neurobiolaging.2017.08.028. PubMed DOI
Gato A., Alonso M.I., Lamus F., Miyan J. Neurogenesis: A process ontogenically linked to brain cavities and their content, CSF. Semin. Cell Dev. Biol. 2020;102:21–27. doi: 10.1016/j.semcdb.2019.11.008. PubMed DOI
Stiles J., Jernigan T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010;20:327–348. doi: 10.1007/s11065-010-9148-4. PubMed DOI PMC
Gato Á., Moro J.A., Alonso M.I., Bueno D., De La Mano A., Martín C. Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2005;284:475–484. doi: 10.1002/ar.a.20185. PubMed DOI
Yeh C., Li A., Chuang J.-Z., Saito M., Cáceres A., Sung C.-H. IGF-1 Activates a Cilium-Localized Noncanonical Gβγ Signaling Pathway that Regulates Cell-Cycle Progression. Dev. Cell. 2013;26:358–368. doi: 10.1016/j.devcel.2013.07.014. PubMed DOI PMC
Saade M., Gonzalez-Gobartt E., Escalona R., Usieto S., Martí E. Shh-mediated centrosomal recruitment of PKA promotes symmetric proliferative neuroepithelial cell division. Nat. Cell Biol. 2017;19:493–503. doi: 10.1038/ncb3512. PubMed DOI
Tiberi L., Vanderhaeghen P., van den Ameele J. Cortical neurogenesis and morphogens: Diversity of cues, sources and functions. Curr. Opin. Cell Biol. 2012;24:269–276. doi: 10.1016/j.ceb.2012.01.010. PubMed DOI
Gonçalves J.T., Schafer S.T., Gage F.H. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell. 2016;167:897–914. doi: 10.1016/j.cell.2016.10.021. PubMed DOI
Capilla-Gonzalez V., Herranz-Pérez V., García-Verdugo J.M. The aged brain: Genesis and fate of residual progenitor cells in the subventricular zone. Front. Cell. Neurosci. 2015;9:365. doi: 10.3389/fncel.2015.00365. PubMed DOI PMC
Mirzadeh Z., Merkle F.T., Soriano-Navarro M., Garcia-Verdugo J.M., Alvarez-Buylla A. Neural Stem Cells Confer Unique Pinwheel Architecture to the Ventricular Surface in Neurogenic Regions of the Adult Brain. Cell Stem Cell. 2008;3:265–278. doi: 10.1016/j.stem.2008.07.004. PubMed DOI PMC
Hu X.-L., Chen G., Zhang S., Zheng J., Wu J., Bai Q.-R., Wang Y., Li J., Wang H., Feng H., et al. Persistent Expression of VCAM1 in Radial Glial Cells Is Required for the Embryonic Origin of Postnatal Neural Stem Cells. Neuron. 2017;95:309–325. doi: 10.1016/j.neuron.2017.06.047. PubMed DOI
Gregg C., Weiss S. CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development. 2005;132:565–578. doi: 10.1242/dev.01592. PubMed DOI
Mizrak D., Levitin H.M., Delgado A.C., Crotet V., Yuan J., Chaker Z., Silva-Vargas V., Sims P.A., Doetsch F. Single-Cell Analysis of Regional Differences in Adult V-SVZ Neural Stem Cell Lineages. Cell Rep. 2019;26:394–406. doi: 10.1016/j.celrep.2018.12.044. PubMed DOI PMC
Mizrak D., Bayin N.S., Yuan J., Liu Z., Suciu R.M., Niphakis M.J., Ngo N., Lum K.M., Cravatt B.F., Joyner A.L., et al. Single-Cell Profiling and SCOPE-Seq Reveal Lineage Dynamics of Adult Ventricular-Subventricular Zone Neurogenesis and NOTUM as a Key Regulator. Cell Rep. 2020;31:107805. doi: 10.1016/j.celrep.2020.107805. PubMed DOI PMC
Vancamp P., Gothié J.-D., Luongo C., Sébillot A., Le Blay K., Butruille L., Pagnin M., Richardson S.J., Demeneix B.A., Remaud S. Gender-specific effects of transthyretin on neural stem cell fate in the subventricular zone of the adult mouse. Sci. Rep. 2019;9:19689. doi: 10.1038/s41598-019-56156-w. PubMed DOI PMC
Quintela T., Gonçalves I., Carreto L.C., Santos M.A.S., Marcelino H., Patriarca F.M., Santos C.R.A. Analysis of the Effects of Sex Hormone Background on the Rat Choroid Plexus Transcriptome by cDNA Microarrays. PLoS ONE. 2013;8:e60199. doi: 10.1371/journal.pone.0060199. PubMed DOI PMC
Hildebrandt S., Schmidt A., Stoll A., Schmitt O., Köhling R., Wree A., Haas S.J.-P., Pützer B.M. Targeting of neural stem cells in the hippocampus of adult rats by custom-made Ad vectors. Brain Struct. Funct. 2010;215:105–113. doi: 10.1007/s00429-010-0275-8. PubMed DOI
Reetz J., Hildebrandt S., Schmidt A., Meier C., Herchenröder O., Gläser A., Witt M., Pützer B.M., Wree A. Novel subventricular zone early progenitor cell-specific adenovirus for in vivo therapy of central nervous system disorders reinforces brain stem cell heterogeneity. Brain Struct. Funct. 2016;221:2049–2059. doi: 10.1007/s00429-015-1025-8. PubMed DOI
Gajera C.R., Emich H., Lioubinski O., Christ A., Beckervordersandforth-Bonk R., Yoshikawa K., Bachmann S., Christensen E.I., Götz M., Kempermann G., et al. LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. J. Cell Sci. 2010;123:1922–1930. doi: 10.1242/jcs.065912. PubMed DOI
Zywitza V., Misios A., Bunatyan L., Willnow T.E., Rajewsky N. Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. Cell Rep. 2018;25 doi: 10.1016/j.celrep.2018.11.003. PubMed DOI
Chen X., He Y., Tian Y., Wang Y., Wu Z., Lan T., Wang H., Cheng K., Xie P. Different Serotypes of Adeno-Associated Virus Vector- and Lentivirus-Mediated Tropism in Choroid Plexus by Intracerebroventricular Delivery. Hum. Gene Ther. 2020;31:440–447. doi: 10.1089/hum.2019.300. PubMed DOI
Regev L., Ezrielev E., Gershon E., Gil S., Chen A. Genetic approach for intracerebroventricular delivery. Proc. Natl. Acad. Sci. USA. 2010;107:4424–4429. doi: 10.1073/pnas.0907059107. PubMed DOI PMC
Zheng M., Huang M., Ma X., Chen H., Gao X. Harnessing Exosomes for the Development of Brain Drug Delivery Systems. Bioconjug. Chem. 2019;30:994–1005. doi: 10.1021/acs.bioconjchem.9b00085. PubMed DOI
Zhu C., Xia Y. Biomimetics: Reconstitution of low-density lipoprotein for targeted drug delivery and related theranostic applications. Chem. Soc. Rev. 2017;46:7668–7682. doi: 10.1039/C7CS00492C. PubMed DOI PMC
Clevers H. Modeling Development and Disease with Organoids. Cell. 2016;165:1586–1597. doi: 10.1016/j.cell.2016.05.082. PubMed DOI
Pellegrini L., Bonfio C., Chadwick J., Begum F., Skehel M., Lancaster M.A. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020:eaaz5626. doi: 10.1126/science.aaz5626. PubMed DOI PMC
Renner M., Lancaster M.A., Bian S., Choi H., Ku T., Peer A., Chung K., Knoblich J.A. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 2017;36:1316–1329. doi: 10.15252/embj.201694700. PubMed DOI PMC
Hochstetler A.E., Whitehouse L., Antonellis P., Berbari N.F., Blazer-Yost B.L. Characterizing the Expression of TRPV4 in the Choroid Plexus Epithelia as a Prospective Component in the Development of Hydrocephalus in the Gas8GT Juvenile Mouse Model. FASEB J. 2018;32:750.12. doi: 10.1096/fasebj.2018.32.1_supplement.750.12. DOI
Allocco A.A., Jin S.C., Duy P.Q., Furey C.G., Zeng X., Dong W., Nelson-Williams C., Karimy J.K., DeSpenza T., Hao L.T., et al. Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3. Front. Cell. Neurosci. 2019;13:425. doi: 10.3389/fncel.2019.00425. PubMed DOI PMC