Regulation of choroid plexus development and its functions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.2.69 / 0.0 / 0.0 / 19_073 / 0016943
Masarykova Univerzita
GX19-28347X
Grantová Agentura České Republiky
PubMed
35589983
PubMed Central
PMC9119385
DOI
10.1007/s00018-022-04314-1
PII: 10.1007/s00018-022-04314-1
Knihovny.cz E-zdroje
- Klíčová slova
- Cerebrospinal fluid (CSF), ChP epithelial cells, Choroid plexus (ChP), Cortical hem, Morphogenesis, Rhombic lips,
- MeSH
- centrální nervový systém * MeSH
- epitelové buňky MeSH
- mozek MeSH
- myši MeSH
- plexus chorioideus * fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.
Zobrazit více v PubMed
Brocklehurst G. The significance of the evolution of the cerebrospinal fluid system. Ann R Coll Surg Engl. 1979;61:349–356. PubMed PMC
Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton: CRC Press; 1996.
Dohrmann GJ, Bucy PC. Human choroid plexus: a light and electron microscopic study. J Neltrosurg. 1970;33:506/516. doi: 10.3171/jns.1970.33.5.0506. PubMed DOI
Dandy WE. Extirpation of the choroid plexus of the lateral ventricles in communicating hydrocephalus. Ann Surg. 1918;68:569–579. doi: 10.1097/00000658-191812000-00001. PubMed DOI PMC
Somerford AE. A case of papilloma of the choroid plexus. Arch Dis Child. 1933;8:53–56. doi: 10.1136/adc.8.43.53. PubMed DOI PMC
Tennyson VM, Pappas GD. Fine structure of the developing telencephalic and myelencephalic choroid plexus in the rabbit. J Comp Neurol. 1964;123:379–411. doi: 10.1002/cne.901230307. PubMed DOI
Sturrock RR. A morphological study of the development of the mouse choroid plexus. J Anat. 1979;129:777–793. PubMed PMC
Lehtinen MK, Zappaterra MW, Chen X, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. 2011;69:893–905. doi: 10.1016/j.neuron.2011.01.023. PubMed DOI PMC
Planques A, Oliveira Moreira V, Dubreuil C, et al. OTX2 signals from the choroid plexus to regulate adult neurogenesis. eNeuro. 2019;6:1–11. doi: 10.1523/ENEURO.0262-18.2019. PubMed DOI PMC
Kaiser K, Gyllborg D, Procházka J, et al. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat Commun. 2019 doi: 10.1038/s41467-019-09298-4. PubMed DOI PMC
Dani N, Herbst RH, McCabe C, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell. 2021;184:3056–3074.e21. doi: 10.1016/j.cell.2021.04.003. PubMed DOI PMC
Langford MB, O’Leary CJ, Veeraval L, et al. WNT5a regulates epithelial morphogenesis in the developing choroid plexus. Cereb Cortex. 2020;30:3617–3631. doi: 10.1093/cercor/bhz330. PubMed DOI
Javed K, Reddy V, Lui F (2021) Neuroanatomy, Choroid Plexus. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK538156/. Accessed 27 Nov 2021 PubMed
Netsky MG, Shuangshoti S. The choroid plexus in health and disease. Charlottesville: University Press of Virginia; 1975.
Roy A, Gonzalez-Gomez M, Pierani A, et al. Lhx2 regulates the development of the forebrain hem system. Cereb Cortex. 2014;24:1361–1372. doi: 10.1093/cercor/bhs421. PubMed DOI PMC
Voetmann E. On the structure and surface area of the human choroid plexuses. Ugeskr Laeger. 1949;111:1051. PubMed
Knudsen PA. The surface area of choroid plexus in normal mouse embryos. Cells Tissues Organs. 1964;58:355–367. doi: 10.1159/000142595. PubMed DOI
Perin P, Rossetti R, Ricci C, et al. 3D reconstruction of the clarified rat hindbrain choroid plexus. Front Cell Dev Biol. 2021;9:1–14. doi: 10.3389/fcell.2021.692617. PubMed DOI PMC
Paladini D, Donarini G, Parodi S, et al. Hindbrain morphometry and choroid plexus position in differential diagnosis of posterior fossa cystic malformations. Ultrasound Obstet Gynecol. 2019;54:207–214. doi: 10.1002/uog.20120. PubMed DOI
Volpe P, De Robertis V, Volpe G, et al. Position of the choroid plexus of the fourth ventricle in first- and second-trimester fetuses: a novel approach to early diagnosis of cystic posterior fossa anomalies. Ultrasound Obstet Gynecol. 2021;58:568–575. doi: 10.1002/uog.23651. PubMed DOI
Spector R, Keep RF, Robert Snodgrass S, et al. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol. 2015;267:78–86. doi: 10.1016/j.expneurol.2015.02.032. PubMed DOI
Catala M. Embryonic and fetal development of structures associated with the cerebro-spinal fluid in man and other species. Part I: the ventricular system, meninges and choroid plexuses. Arch Anat Cytol Pathol. 1998;46:153–169. PubMed
Schmidley JW, Wissig SL. Basement membrane of central nervous system capillaries lacks ruthenium red-staining sites. Microvasc Res. 1986;32:300–314. doi: 10.1016/0026-2862(86)90067-1. PubMed DOI
Ek CJ, Habgood MD, Dziegielewska KM, Saunders NR. Structural characteristics and barrier properties of the choroid plexuses in developing brain of the opossum (Monodelphis domestica) J Comp Neurol. 2003;460:451–464. doi: 10.1002/cne.10661. PubMed DOI
Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847–1892. doi: 10.1152/physrev.00004.2013. PubMed DOI
Zagórska-Świezy K, Litwin JA, Gorczyca J, et al. Arterial supply and venous drainage of the choroid plexus of the human lateral ventricle in the prenatal period as revealed by vascular corrosion casts and SEM. Folia Morphol. 2008;67(3):209–213. PubMed
Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–312. doi: 10.1038/nrn3722. PubMed DOI
Pietzsch-Rohrschneider I. The development of epiplexus cells (Kolmer cells) in the choroid plexus of the fourth ventricle of the mouse. A scanning and transmission electron microscopic study. Z Mikrosk Anat Forsch. 1980;94:316–326. PubMed
Thomas T, Dziadek M. Capacity to form choroid plexus-like cells in vitro is restricted to specific regions of the mouse neural ectoderm. Development. 1993;117:253–262. doi: 10.1242/dev.117.1.253. PubMed DOI
Møllgård K, Lauritzen B, Saunders NR. Double replica technique applied to choroid plexus from early foetal sheep: completeness and complexity of tight junctions. J Neurocytol. 1979;8:139–149. doi: 10.1007/BF01175557. PubMed DOI
Cornford EM, Varesi JB, Hyman S, et al. Mitochondrial content of choroid plexus epithelium. Exp Brain Res. 1997;116:399–405. doi: 10.1007/PL00005768. PubMed DOI
Praetorius J, Nejsum LN, Nielsen S. A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells. Am J Physiol Cell Physiol. 2004;286:C601–C610. doi: 10.1152/ajpcell.00240.2003. PubMed DOI
Masuzawa T, Sato F. The enzyme histochemistry of the choroid plexus. Brain. 1983;106:55–99. doi: 10.1093/brain/106.1.55. PubMed DOI
Bouzinova EV, Praetorius J, Virkki LV, et al. Na+-dependent HCO3- uptake into the rat choroid plexus epithelium is partially DIDS sensitive. Am J Physiol - Cell Physiol. 2005;289:1448–1456. doi: 10.1152/ajpcell.00313.2005. PubMed DOI
Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Mollgard K, Potter A, et al. Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res. 2005;322:353–364. doi: 10.1007/s00441-005-1120-x. PubMed DOI
Bailey P. Morphology of the roof plate of the forebrain and the lateral choroid plexuses in the human embryo. J Comp Neurol. 1915;26:79–120. doi: 10.1002/cne.900260104. DOI
Hébert JM, Mishina Y, McConnell SK. BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron. 2002;35:1029–1041. doi: 10.1016/S0896-6273(02)00900-5. PubMed DOI
Johansson PA, Irmler M, Acampora D, et al. The transcription factor Otx2 regulates choroid plexus development and function. Dev. 2013;140:1055–1066. doi: 10.1242/dev.090860. PubMed DOI
Koshida R, Oishi H, Hamada M, et al. MafB is required for development of the hindbrain choroid plexus. Biochem Biophys Res Commun. 2017;483:288–293. doi: 10.1016/j.bbrc.2016.12.150. PubMed DOI
Kaiser K, Jang A, Kompanikova P, et al. MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus. Development. 2021;148(10):dev192054. doi: 10.1242/dev.192054. PubMed DOI PMC
Pellegrini L, Bonfio C, Chadwick J, et al. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science (80-) 2020 doi: 10.1126/science.aaz5626. PubMed DOI PMC
Huang X, Ketova T, Fleming JT, et al. Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development. 2009;136:2535–2543. doi: 10.1242/dev.033795. PubMed DOI PMC
Kratzer I, Vasiljevic A, Rey C, et al. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol. 2012;138:861–879. doi: 10.1007/s00418-012-1001-9. PubMed DOI PMC
Nielsen CM, Dymecki SM. Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev Biol. 2010;340:430–437. doi: 10.1016/j.ydbio.2010.01.032. PubMed DOI PMC
Christensen IB, Wu Q, Bohlbro AS, et al. Genetic disruption of slc4a10 alters the capacity for cellular metabolism and vectorial ion transport in the choroid plexus epithelium. Fluids Barriers CNS. 2020;17:1–18. doi: 10.1186/s12987-019-0162-5. PubMed DOI PMC
Redzic ZB, Preston JE, Duncan JA, et al. The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol. 2005;71:1–52. doi: 10.1016/S0070-2153(05)71001-2. PubMed DOI
Johanson CE, Duncan JA, Klinge PM, et al. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:1–32. doi: 10.1186/1743-8454-5-10. PubMed DOI PMC
Brinker T, Edward Stopa JM, Klinge P. A new look at cerebrospinal fluid movement. Fluids Barriers CNS. 2014;11:1–16. doi: 10.1186/2045-8118-11-16. PubMed DOI PMC
Faubel R, Westendorf C, Bodenschatz E, Eichele G. Cilia-based flow network in the brain ventricles. Science (80-) 2016;353:176–178. doi: 10.1126/science.aae0450. PubMed DOI
Conductier G, Brau F, Viola A, et al. Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nat Neurosci. 2013;16:845–847. doi: 10.1038/nn.3401. PubMed DOI
Olstad EW, Ringers C, Hansen JN, et al. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr Biol. 2019;29:229–241.e6. doi: 10.1016/j.cub.2018.11.059. PubMed DOI PMC
Desmond ME, Jacobson AG. Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol. 1977;57:188–198. doi: 10.1016/0012-1606(77)90364-5. PubMed DOI
Zappaterra MD, Lisgo SN, Lindsay S, et al. A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res. 2007;6:3537–3548. doi: 10.1021/pr070247w. PubMed DOI
Lun MP, Johnson MB, Broadbelt KG, et al. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci. 2015;35:4903–4916. doi: 10.1523/JNEUROSCI.3081-14.2015. PubMed DOI PMC
Huang X, Liu J, Ketova T, et al. Transventricular delivery of sonic hedgehog is essential to cerebellar ventricular zone development. Proc Natl Acad Sci U S A. 2010;107:8422–8427. doi: 10.1073/pnas.0911838107. PubMed DOI PMC
Gallego JA, Gordon ML, Claycomb K, et al. In vivo MicroRNA detection and quantitation in cerebrospinal fluid. J Mol Neurosci. 2012;47:243–248. doi: 10.1007/s12031-012-9731-7. PubMed DOI PMC
Cameron PD, Boyce JMH, Ansari BM. Cerebrospinal fluid lactate in meningitis and meningococcaemia. J Infect. 1993;26:245–252. doi: 10.1016/0163-4453(93)95253-F. PubMed DOI
Bruna J, González L, Miró J, et al. Leptomeningeal carcinomatosis prognostic implications of clinical and cerebrospinal fluid features. Cancer. 2009;115:381–389. doi: 10.1002/cncr.24041. PubMed DOI
Fernandez F, Verdu A, Quero J, et al. Cerebrospinal fluid lactate levels in term infants with perinatal hypoxia. Pediatr Neurol. 1986;2:39–42. doi: 10.1016/0887-8994(86)90038-x. PubMed DOI
Hoffmann GF, Surtees RA, Wevers RA. Cerebrospinal fluid investigations for neurometabolic disorders. Neuropediatrics. 1998;29:59–71. doi: 10.1055/s-2007-973538. PubMed DOI
Zlokovic BV, Jovanovic S, Miao W, et al. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology. 2000;141:1434–1441. doi: 10.1210/endo.141.4.7435. PubMed DOI
Bill BR, Balciunas D, McCarra JA, et al. Development and notch signaling requirements of the zebrafish choroid plexus. PLoS ONE. 2008;3:1–9. doi: 10.1371/journal.pone.0003114. PubMed DOI PMC
Henson HE, Parupalli C, Ju B, Taylor MR. Functional and genetic analysis of choroid plexus development in zebrafish. Front Neurosci. 2014;8:1–19. doi: 10.3389/fnins.2014.00364. PubMed DOI PMC
Van Leeuwen LM, Evans RJ, Jim KK, et al. A transgenic zebrafish model for the in vivo study of the blood and choroid plexus brain barriers using claudin 5. Biol Open. 2018 doi: 10.1242/bio.030494. PubMed DOI PMC
García-Lecea M, Kondrychyn I, Fong SH, et al. In vivo analysis of choroid plexus morphogenesis in zebrafish. PLoS ONE. 2008 doi: 10.1371/journal.pone.0003090. PubMed DOI PMC
Wilting J, Christ B. An experimental and ultrastructural study on the development of the avian choroid plexus. Cell Tissue Res. 1989;255:487–494. doi: 10.1007/BF00218783. PubMed DOI
Chizhikov VV, Millen KJ. Roof plate-dependent patterning of the vertebrate dorsal central nervous system. Dev Biol. 2005;277:287–295. doi: 10.1016/j.ydbio.2004.10.011. PubMed DOI
Krispin S, Nitzan E, Kassem Y, et al. Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development. 2010;137(4):585–595. doi: 10.1242/dev.041509. PubMed DOI
Rekler D, Kalcheim C. From neural crest to definitive roof plate: the dynamic behavior of the dorsal neural tube. Int J Mol Sci. 2021 doi: 10.3390/ijms22083911. PubMed DOI PMC
Currle DS, Cheng X, Hsu CM, et al. Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development. 2005;132(15):3549–3559. doi: 10.1242/dev.01915. PubMed DOI
Hunter NL, Dymecki SM. Molecularly and temporally separable lineages comprise the hindbrain roof plate and contribute differentially to the choroid plexus. Dev. 2007;134:3449–3460. doi: 10.1242/dev.003095. PubMed DOI PMC
McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell. 1990;62:1073–1085. doi: 10.1016/0092-8674(90)90385-R. PubMed DOI
Monuki ES, Porter FD, Walsh CA. Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-lhx2 pathway. Neuron. 2001;32:591–604. doi: 10.1016/S0896-6273(01)00504-9. PubMed DOI
Porter FD, Drago J, Xu Y, et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development. 1997;124:2935–2944. doi: 10.1242/dev.124.15.2935. PubMed DOI
Furuta Y, Piston DW, Hogan BLM. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development. 1997;124:2203–2212. doi: 10.1242/dev.124.11.2203. PubMed DOI
Hanashima C, Fernandes M, Hebert J, et al. The role of Foxg1 and dorsal midline signaling in the generation of Cajal–Retzius subtypes. J Neurosci. 2007;27(41):11103–11111. doi: 10.1523/JNEUROSCI.1066-07.2007. PubMed DOI PMC
Watanabe M, Kang YJ, Davies LM, et al. BMP4 sufficiency to induce choroid plexus epithelial fate from embryonic stem cell-derived neuroepithelial progenitors. J Neurosci. 2012;32:15934–15945. doi: 10.1523/JNEUROSCI.3227-12.2012. PubMed DOI PMC
Panchision DM, Pickel JM, Studer L, et al. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev. 2001;15:2094–2110. doi: 10.1101/gad.894701. PubMed DOI PMC
Boncinelli E, Gulisano M, Spada F, et al. Emx and Otx gene expression in the developing mouse brain. Ciba Found Symp. 1995 doi: 10.1002/9780470514795.ch6. PubMed DOI
von Frowein J, Wizenmann A, Götz M. The transcription factors Emx1 and Emx2 suppress choroid plexus development and promote neuroepithelial cell fate. Dev Biol. 2006;296:239–252. doi: 10.1016/j.ydbio.2006.04.461. PubMed DOI
Yoshida M, Suda Y, Matsuo I, et al. Emx1 and Emx2 functions in development of dorsal telencephalon. Development. 1997;124(1):101–111. doi: 10.1242/dev.124.1.101. PubMed DOI
Stauder AJ, Dickson PW, Aldred AR, et al. Synthesis of transthyretin (pre-albumin) mRNA in choroid plexus epithelial cells, localized by in situ hybridization in rat brain. J Histochem Cytochem. 1986;34:949–952. doi: 10.1177/34.7.3458812. PubMed DOI
Casoni F, Croci L, Vincenti F, et al. ZFP423 regulates early patterning and multiciliogenesis in the hindbrain choroid plexus. Dev. 2020 doi: 10.1242/dev.190173. PubMed DOI PMC
Millonig JH, Millen KJ, Hatten ME. The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature. 2000;403:764–769. doi: 10.1038/35001573. PubMed DOI
Chizhikov VV, Lindgren AG, Mishima Y, et al. Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A. 2010;107:10725–10730. doi: 10.1073/pnas.0910786107. PubMed DOI PMC
Himmelstein DS, Bi C, Clark B, et al. Balanced Shh signaling is required for proper formation and maintenance of dorsal telencephalic midline structures. BMC Evol Biol. 2010;10(1):118. doi: 10.1186/1471-213X-10-118. PubMed DOI PMC
Grove EA, Tole S, Limon J, et al. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development. 1998;125(12):2315–2325. doi: 10.1242/dev.125.12.2315. PubMed DOI
Bulchand S, Grove EA, Porter FD, et al. LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech Dev. 2001;100(2):165–175. doi: 10.1016/S0925-4773(00)00515-3. PubMed DOI
Borrell V, Marín O. Meninges control tangential migration of hem-derived Cajal–Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci. 2006;9:1284–1293. doi: 10.1038/nn1764. PubMed DOI
Gu X, Liu B, Wu X, et al. Inducible genetic lineage tracing of cortical hem derived Cajal–Retzius cells reveals novel properties. PLoS ONE. 2011;6:1–9. doi: 10.1371/journal.pone.0028653. PubMed DOI PMC
Awatramanil R, Soriano P, Rodriguez C, et al. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat Genet. 2003;35:70–75. doi: 10.1038/ng1228. PubMed DOI
Yeung J, Ha TJ, Swanson DJ, et al. Wls provides a new compartmental view of the rhombic lip in mouse cerebellar development. J Neurosci. 2014;34(37):12527–12537. doi: 10.1523/JNEUROSCI.1330-14.2014. PubMed DOI PMC
Alder J, Cho NK, Hatten ME. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron. 1996;17:389–399. doi: 10.1016/S0896-6273(00)80172-5. PubMed DOI
Landsberg RL, Awatramani RB, Hunter NL, et al. Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron. 2005;48:933–947. doi: 10.1016/j.neuron.2005.11.031. PubMed DOI
Han XH, Jin YR, Seto M, Yoon JK. A WNT/β-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis. J Biol Chem. 2011;286:10649–10659. doi: 10.1074/jbc.M110.169391. PubMed DOI PMC
Imayoshi I, Shimogori T, Ohtsuka T, Kageyama R. Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development. 2008;135:2531–2541. doi: 10.1242/dev.021535. PubMed DOI
Parichha A, Suresh V, Chatterjee M, et al. Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate. Nat Commun. 2022;13:633. doi: 10.1038/s41467-021-27602-z. PubMed DOI PMC
Kikkawa T, Sakayori N, Yuuki H, et al. Dmrt genes participate in the development of Cajal–Retzius cells derived from the cortical hem in the telencephalon. Dev Dyn. 2020;249(6):698–710. doi: 10.1002/dvdy.156. PubMed DOI
Hagan N, Guarente J, Ellisor D, Zervas M. The temporal contribution of the Gbx2 lineage to cerebellar neurons. Front Neuroanat. 2017 doi: 10.3389/fnana.2017.00050. PubMed DOI PMC
Dziegielewska KM, Ek J, Habgood MD, Saunders NR. Development of the choroid plexus. Microsc Res Tech. 2001;52:5–20. doi: 10.1002/1097-0029(20010101)52:1<5::aid-jemt3>3.3.co;2-a. PubMed DOI
Altma J, Das GD. Autoradiographic and histoloaical evidence of postnatal hippocampal neurogenesis in rats. J Comp Neu. 1965;124:319–3:31/335. doi: 10.1002/cne.901240303. PubMed DOI
Korzhevskii DE. Proliferative zones in the epithelium of the choroid plexuses of the human embryo brain. Neurosci Behav Physiol. 2000;30:509–512. doi: 10.1007/BF02462607. PubMed DOI
Chauhan AN. Lewis PD (1979) a quantitative study of cell proliferation in ependyma and choroid plexus in the postnatal rat brain a. Neuropathol Appl Neurobiol. 1979;5:303–309. doi: 10.1111/j.1365-2990.1979.tb00629.x. PubMed DOI
Li Y, Chen J, Chopp M. Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats. J Neurol Sci. 2002;193:137–146. doi: 10.1016/S0022-510X(01)00657-8. PubMed DOI
Barkho BZ, Monuki ES. Proliferation of cultured mouse choroid plexus epithelial cells. PLoS ONE. 2015;10:1–14. doi: 10.1371/journal.pone.0121738. PubMed DOI PMC
Chouaf-Lakhdar L, Fèvre-Montange M, Brisson C, et al. Proliferative activity and nestin expression in periventricular cells of the adult rat brain. NeuroReport. 2003;14:633–636. doi: 10.1097/00001756-200303240-00022. PubMed DOI
Ide C, Kitada M, Chakrabortty S, et al. Grafting of choroid plexus ependymal cells promotes the growth of regenerating axons in the dorsal funiculus of rat spinal cord: a preliminary report. Exp Neurol. 2001;167:242–251. doi: 10.1006/exnr.2000.7566. PubMed DOI
Kanekiyo K, Nakano N, Noda T, et al. Transplantation of choroid plexus epithelial cells into contusion-injured spinal cord of rats. Restor Neurol Neurosci. 2016;34:347–366. doi: 10.3233/RNN-150546. PubMed DOI PMC
Borlongan CV, Skinner SJM, Geaney M, et al. Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke. 2004;35:2206–2210. doi: 10.1161/01.STR.0000138954.25825.0b. PubMed DOI
Johanson CE, Vıo K, Guerra M. Organ culture and grafting of choroid plexus into the ventricular CSF of normal and hydrocephalic HTx rats. J Neuropathol Exp Neurol. 2020;79(6):626–640. doi: 10.1093/jnen/nlaa028. PubMed DOI
Borlongan CV, Thanos CG, Skinner SJM, et al. Transplants of encapsulated rat choroid plexus cells exert neuroprotection in a rodent model of Huntington’s disease. Cell Transplant. 2008;16:987–992. doi: 10.3727/000000007783472426. PubMed DOI
Thanos CG, Bintz BE, Goddard M, et al. Functional modulation of choroid plexus epithelial clusters in vitro for tissue repair applications. Cell Transplant. 2011;20:1659–1672. doi: 10.3727/096368911X564985. PubMed DOI
Vong KI, Ma TC, Li B, et al. SOX9-COL9A3-dependent regulation of choroid plexus epithelial polarity governs blood-cerebrospinal fluid barrier integrity. Proc Natl Acad Sci U S A. 2021;118:1–11. doi: 10.1073/pnas.2009568118. PubMed DOI PMC
Lewis AE, Vasudevan HN, O’Neill AK, et al. The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Dev Biol. 2013;379:229–234. doi: 10.1016/j.ydbio.2013.04.026. PubMed DOI PMC
Breier G, Albrecht U, Sterrer S, et al. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development. 1992;114(2):521–532. doi: 10.1242/dev.114.2.521. PubMed DOI
Esser S, Wolburg K, Wolburg H, et al. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol. 1998;140(4):947–959. doi: 10.1083/jcb.140.4.947. PubMed DOI PMC
Keep RF, Jones HC. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res. 1990;56(1):47–53. doi: 10.1016/0165-3806(90)90163-S. PubMed DOI
Gerstmann K, Kindbeiter K, Telley T, et al (2020) An unconventional cerebrospinal fluid-derived Semaphorin-signalling regulates apical progenitor dynamics in the developing neocortex. bioRxiv. 10.1101/2020.05.20.106526
Vancamp P, Gothié JD, Luongo C, et al. Gender-specific effects of transthyretin on neural stem cell fate in the subventricular zone of the adult mouse. Sci Rep. 2019;9:1–14. doi: 10.1038/s41598-019-56156-w. PubMed DOI PMC
Arnaud K, Moreira VO, Vincent J, et al. Choroid plexus APP regulates adult brain proliferation and animal behavior. Life Sci Alliance. 2021;4:1–11. doi: 10.26508/lsa.202000703. PubMed DOI PMC
Biondi G. Ein neuer histologiseher Befund am Epithel des Plexus ehorioideus. Neur u Psych. 1932;144:161–165. doi: 10.1007/BF02870278. DOI
Kiktenko AI. Biondi bodies in the choroid plexus epithelium of the human brain—a scanning electron-microscopic study. Cell Tissue Res. 1986;244:239–240. doi: 10.1007/BF00218405. PubMed DOI
Kim J, Alejandro B, Hetman M, et al. Zika virus infects pericytes in the choroid plexus and enters the central nervous system through the blood-cerebrospinal fluid barrier. PLoS Pathog. 2020;16:1–27. doi: 10.1371/journal.ppat.1008204. PubMed DOI PMC
Yang AC, Kern F, Losada PM, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595:565–571. doi: 10.1038/s41586-021-03710-0. PubMed DOI PMC
Pellegrini L, Albecka A, Mallery DL, et al. SARS-CoV-2 infects brain choroid plexus and disrupts the blood-CSF-barrier. bioRxiv. 2020 doi: 10.1101/2020.08.20.259937. PubMed DOI PMC
Carloni S, Bertocchi A, Mancinelli S, et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science. 2021;374:439–448. doi: 10.1126/science.abc6108. PubMed DOI
Liu J, Trefty JC, Babka AM, et al. Ebola virus persistence and disease recrudescence in the brains of antibody-treated nonhuman primate survivors. Sci Transl Med. 2022 doi: 10.1126/scitranslmed.abi5229. PubMed DOI
Kim S, Hwang Y, Lee D, Webster MJ. Transcriptome sequencing of the choroid plexus in schizophrenia. Transl Psychiatry. 2016;6:e964. doi: 10.1038/tp.2016.229. PubMed DOI PMC
Lizano P, Lutz O, Ling G, et al. Association of choroid plexus enlargement with cognitive, inflammatory, and structural phenotypes across the psychosis spectrum. Am J Psychiatry. 2019;176:564–572. doi: 10.1176/appi.ajp.2019.18070825. PubMed DOI PMC
Turner CA, Thompson RC, Bunney WE, et al. Altered choroid plexus gene expression in major depressive disorder. Front Hum Neurosci. 2014;8:1–8. doi: 10.3389/fnhum.2014.00238. PubMed DOI PMC
Kertser A, Baruch K, Cooper I, Schwartz M. Severe psychological stress impairs choroid plexus gateway activity for leukocyte trafficking. Brain Behav Immun. 2017;66:e10. doi: 10.1016/j.bbi.2017.07.049. DOI
Lee JH, Ostalecki C, Oberstein T, et al. Alzheimer’s disease protease-containing plasma extracellular vesicles transfer to the hippocampus via the choroid plexus. EBioMedicine. 2022;77:103903. doi: 10.1016/j.ebiom.2022.103903. PubMed DOI PMC
Smith AB, Smirniotopoulos JG, Horkanyne-Szakaly I. From the radiologic pathology archives: Intraventricular neoplasms: Radiologic-pathologic correlation. Radiographics. 2013;33:21–43. doi: 10.1148/rg.331125192. PubMed DOI
Paulus W, Brandner S, Louis DN, et al. WHO classification of tumours of the central nervous system. Lyon: IARC; 2007. pp. 82–85.
Taggard DA, Menezes AH. Three choroid plexus papillomas in a patient with Aicardi syndrome: a case report. Pediatr Neurosurg. 2000;33:219–223. doi: 10.1159/000055956. PubMed DOI
Cruz O, Caloretti V, Salvador H, et al. Synchronous choroid plexus papilloma and Wilms tumor in a girl, disclosing a Li-Fraumeni syndrome. Hered Cancer Clin Pract. 2021;19:1–6. doi: 10.1186/s13053-020-00158-7. PubMed DOI PMC
Blamires TL, Maher ER. CHOROID PLEXUS PAPILLOMA a new presentation a/von Hippel-Lindau (VHL) disease. Eye. 1992 doi: 10.1038/eye.1992.18. PubMed DOI
Bettegowda C, Adogwa O, Mehta V, et al. Treatment of choroid plexus tumors: a 20-year single institutional experience. J Neurosurg Pediatr. 2012;10:398–405. doi: 10.3171/2012.8.PEDS12132. PubMed DOI PMC
Tabori U, Shlien A, Baskin B, et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol. 2010;28:1995–2001. doi: 10.1200/JCO.2009.26.8169. PubMed DOI
Nupponen NN, Paulsson J, Jeibmann A, et al. Platelet-derived growth factor receptor expression and amplification in choroid plexus carcinomas. Mod Pathol. 2008;21:265–270. doi: 10.1038/modpathol.3800989. PubMed DOI
Beschorner R, Waidelich J, Trautmann K, et al. Notch receptors in human choroid plexus tumors. Histol Histopathol. 2013;28(8):1055–1063. doi: 10.14670/HH-28.1055. PubMed DOI
Li L, Grausam KB, Wang J, et al. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nat Cell Biol. 2016;18:418–430. doi: 10.1038/ncb3327. PubMed DOI PMC
Swiderski RE, Agassandian K, Ross JL, et al. Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly. Fluids Barriers CNS. 2012;9:1–13. doi: 10.1186/2045-8118-9-22. PubMed DOI PMC
Hynes AM, Giles RH, Srivastava S, et al. Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis. Proc Natl Acad Sci U S A. 2014;111:9893–9898. doi: 10.1073/pnas.1322373111. PubMed DOI PMC
Shim JW, Territo PR, Simpson S, et al. Hydrocephalus in a rat model of Meckel Gruber syndrome with a TMEM67 mutation. Sci Rep. 2019;9:1–17. doi: 10.1038/s41598-018-37620-5. PubMed DOI PMC
Panduranga C, Kangle R, Badami R, Patil P. Meckel-Gruber syndrome: report of two cases. J Neurosci Rural Pract. 2012;3:56–59. doi: 10.4103/0976-3147.91943. PubMed DOI PMC
Activation of Wnt/β-catenin signaling is critical for the tumorigenesis of choroid plexus