Extracellular vesicles as precision therapeutics for psychiatric conditions: targeting interactions among neuronal, glial, and immune networks
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40264776
PubMed Central
PMC12011847
DOI
10.3389/fimmu.2025.1454306
Knihovny.cz E-zdroje
- Klíčová slova
- extracellular vesicle-based therapies, extracellular vesicles, immune system, neurological and psychiatric disorders, pharmacodynamics, pharmacokinetics, regulatory agencies,
- MeSH
- biologické markery MeSH
- duševní poruchy * terapie imunologie metabolismus MeSH
- extracelulární vezikuly * imunologie metabolismus transplantace MeSH
- individualizovaná medicína * metody MeSH
- lidé MeSH
- mezibuněčná komunikace MeSH
- mozek imunologie metabolismus MeSH
- neuroglie * metabolismus imunologie MeSH
- neurony * metabolismus imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
The critical role of the immune system in brain function and dysfunction is well recognized, yet development of immune therapies for psychiatric diseases has been slow due to concerns about iatrogenic immune deficiencies. These concerns are emphasized by the lack of objective diagnostic tools in psychiatry. A promise to resolve this conundrum lies in the exploitation of extracellular vesicles (EVs) that are physiologically produced or can be synthetized. EVs regulate recipient cell functions and offer potential for EVs-based therapies. Intranasal EVs administration enables the targeting of specific brain regions and functions, thereby facilitating the design of precise treatments for psychiatric diseases. The development of such therapies requires navigating four dynamically interacting networks: neuronal, glial, immune, and EVs. These networks are profoundly influenced by brain fluid distribution. They are crucial for homeostasis, cellular functions, and intercellular communication. Fluid abnormalities, like edema or altered cerebrospinal fluid (CSF) dynamics, disrupt these networks, thereby negatively impacting brain health. A deeper understanding of the above-mentioned four dynamically interacting networks is vital for creating diagnostic biomarker panels to identify distinct patient subsets with similar neuro-behavioral symptoms. Testing the functional pathways of these biomarkers could lead to new therapeutic tools. Regulatory approval will depend on robust preclinical data reflecting progress in these interdisciplinary areas, which could pave the way for the design of innovative and precise treatments. Highly collaborative interdisciplinary teams will be needed to achieve these ambitious goals.
3rd Medical Faculty Charles University Prague Czechia
Department of Biology Hartford University West Hartford CT United States
Department of Medicine Yale School of Medicine New Haven CT United States
Institute of Physics of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol. (2021) 21:20–36. doi: 10.1038/s41577-020-0387-1 PubMed DOI
Salvador AF, de Lima KA, Kipnis J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol. (2021) 21:526–41. doi: 10.1038/s41577-021-00508-z PubMed DOI
Tayer-Shifman OE, Rosen CF, Wakani L, Touma Z. Novel biological therapeutic approaches to cutaneous lupus erythematosus. Expert Opin Biol Ther. (2018) 18:1041–7. doi: 10.1080/14712598.2018.1513484 PubMed DOI
Kuek A, Hazleman BL, Ostor AJ. Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad Med J. (2007) 83:251–60. doi: 10.1136/pgmj.2006.052688 PubMed DOI PMC
Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. . Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. (2009) 513:532–41. doi: 10.1002/cne.v513:5 PubMed DOI
Giove F, Zuo XN, Calhoun VD. Editorial: Insights in brain imaging methods: 2023. Front Neurosci. (2024) 18:1488845. doi: 10.3389/fnins.2024.1488845 PubMed DOI PMC
Raichle ME. The brain’s default mode network. Annu Rev Neurosci. (2015) 38:433–47. doi: 10.1146/annurev-neuro-071013-014030 PubMed DOI
Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. . Toward discovery science of human brain function. Proc Natl Acad Sci U S A. (2010) 107:4734–9. doi: 10.1073/pnas.0911855107 PubMed DOI PMC
Perovnik M, Rus T, Schindlbeck KA, Eidelberg D. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat Rev Neurol. (2023) 19:73–90. doi: 10.1038/s41582-022-00753-3 PubMed DOI
Van Essen DC. Cartography and connectomes. Neuron. (2013) 80:775–90. doi: 10.1016/j.neuron.2013.10.027 PubMed DOI PMC
Seguin C, Sporns O, Zalesky A. Brain network communication: concepts, models and applications. Nat Rev Neurosci. (2023) 24:557–74. doi: 10.1038/s41583-023-00718-5 PubMed DOI
Chung K, Deisseroth K. CLARITY for mapping the nervous system. Nat Methods. (2013) 10:508–13. doi: 10.1038/nmeth.2481 PubMed DOI
Ueda HR, Erturk A, Chung K, Gradinaru V, Chedotal A, Tomancak P, et al. . Tissue clearing and its applications in neuroscience. Nat Rev Neurosci. (2020) 21:61–79. doi: 10.1038/s41583-019-0250-1 PubMed DOI PMC
Deisseroth K. Optogenetics. Nat Methods. (2011) 8:26–9. doi: 10.1038/nmeth.f.324 PubMed DOI PMC
MaChado TA, Kauvar IV, Deisseroth K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci. (2022) 23:683–704. doi: 10.1038/s41583-022-00634-0 PubMed DOI PMC
Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, et al. . Molecular diversity and specializations among the cells of the adult mouse brain. Cell. (2018) 174:1015–30 e16. doi: 10.1016/j.cell.2018.07.028 PubMed DOI PMC
Hamilton PJ, Lim CJ, Nestler EJ, Heller EA. Neuroepigenetic editing. Methods Mol Biol. (2024) 2842:129–52. doi: 10.1007/978-1-4939-7774-1_5 PubMed DOI PMC
Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. Cell Rep. (2020) 30:1271–81. doi: 10.1016/j.celrep.2020.01.010 PubMed DOI
Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron. (2014) 81:728–39. doi: 10.1016/j.neuron.2014.02.007 PubMed DOI PMC
Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev. (2018) 98:239–389. doi: 10.1152/physrev.00042.2016 PubMed DOI PMC
Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. . Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. (2021) 24:312–25. doi: 10.1038/s41593-020-00783-4 PubMed DOI PMC
Simons M, Gibson EM, Nave KA. Oligodendrocytes: myelination, plasticity, and axonal support. Cold Spring Harb Perspect Biol. (2024) 16:1–20. doi: 10.1101/cshperspect.a041359 PubMed DOI PMC
Foerster S, Floriddia EM, van Bruggen D, Kukanja P, Herve B, Cheng S, et al. . Developmental origin of oligodendrocytes determines their function in the adult brain. Nat Neurosci. (2024) 27:1545–54. doi: 10.1038/s41593-024-01666-8 PubMed DOI PMC
Xie S, Li F. Ependymal cells: roles in central nervous system infections and therapeutic application. J Neuroinflammation. (2024) 21:255. doi: 10.1186/s12974-024-03240-2 PubMed DOI PMC
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, et al. . Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol. (2024) 148:39. doi: 10.1007/s00401-024-02784-0 PubMed DOI
Szabolcsi V, Celio MR. De novo expression of parvalbumin in ependymal cells in response to brain injury promotes ependymal remodeling and wound repair. Glia. (2015) 63:567–94. doi: 10.1002/glia.22768 PubMed DOI
Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science. (2023) 380:eabo7649. doi: 10.1126/science.abo7649 PubMed DOI
Kaplan L, Chow BW, Gu C. Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat Rev Neurosci. (2020) 21:416–32. doi: 10.1038/s41583-020-0322-2 PubMed DOI PMC
Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke. (2013) 44:S93–5. doi: 10.1161/STROKEAHA.112.678698 PubMed DOI PMC
Starke N, Challa NVD, Yuan H, Chen S, Duncan MR, Cabrera Ranaldi E, et al. . Extracellular vesicle ASC: A novel mediator for lung-brain axis in preterm brain injury. Am J Respir Cell Mol Biol. (2024) 71:464–80. doi: 10.1165/rcmb.2023-0402OC PubMed DOI PMC
Wu H, Zhang Y, Yu J, Shi M. Editorial: Gut-liver-brain axis: a complex network influences human health and diseases. Front Neurosci. (2023) 17:1241069. doi: 10.3389/fnins.2023.1241069 PubMed DOI PMC
Cocco C, Manca E, Corda G, Angioni MM, Noli B, Congia M, et al. . Brain-reactive autoantibodies in neuropsychiatric systemic lupus erythematosus. Front Immunol. (2023) 14:1157149. doi: 10.3389/fimmu.2023.1157149 PubMed DOI PMC
Meszaros ZS, Perl A, Faraone SV. Psychiatric symptoms in systemic lupus erythematosus: a systematic review. J Clin Psychiatry. (2012) 73:993–1001. doi: 10.4088/JCP.11r07425 PubMed DOI PMC
Kawikova I, Leckman JF, Kronig H, Katsovich L, Bessen DE, Ghebremichael M, et al. . Decreased numbers of regulatory T cells suggest impaired immune tolerance in children with tourette syndrome: a preliminary study. Biol Psychiatry. (2007) 61:273–8. doi: 10.1016/j.biopsych.2006.06.012 PubMed DOI
Corsi-Zuelli F, Deakin B, de Lima MHF, Qureshi O, Barnes NM, Upthegrove R, et al. . T regulatory cells as a potential therapeutic target in psychosis? Current challenges and future perspectives. Brain Behav Immun Health. (2021) 17:100330. doi: 10.1016/j.bbih.2021.100330 PubMed DOI PMC
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res. (2023) 195:106893. doi: 10.1016/j.phrs.2023.106893 PubMed DOI
Morer A, Chae W, Henegariu O, Bothwell AL, Leckman JF, Kawikova I. Elevated expression of MCP-1, IL-2 and PTPR-N in basal ganglia of Tourette syndrome cases. Brain Behav Immun. (2010) 24:1069–73. doi: 10.1016/j.bbi.2010.02.007 PubMed DOI
Trepanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry. (2016) 21:1009–26. doi: 10.1038/mp.2016.90 PubMed DOI PMC
Mayer MG, Fischer T. Microglia at the blood brain barrier in health and disease. Front Cell Neurosci. (2024) 18:1360195. doi: 10.3389/fncel.2024.1360195 PubMed DOI PMC
Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. (1997) 17:171–80. doi: 10.1523/JNEUROSCI.17-01-00171.1997 PubMed DOI PMC
Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A. (1994) 91:13052–6. doi: 10.1073/pnas.91.26.13052 PubMed DOI PMC
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. . A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. (2012) 4:147ra11. doi: 10.1126/scitranslmed.3003748 PubMed DOI PMC
Lohela TJ, Lilius TO, Nedergaard M. The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discovery. (2022) 21:763–79. doi: 10.1038/s41573-022-00500-9 PubMed DOI
Salvador AFM, Abduljawad N, Kipnis J. Meningeal lymphatics in central nervous system diseases. Annu Rev Neurosci. (2024) 47:323–44. doi: 10.1146/annurev-neuro-113023-103045 PubMed DOI
Xie Y, Ba L, Wang M, Deng SY, Chen SM, Huang LF, et al. . Chronic sleep fragmentation shares similar pathogenesis with neurodegenerative diseases: Endosome-autophagosome-lysosome pathway dysfunction and microglia-mediated neuroinflammation. CNS Neurosci Ther. (2020) 26:215–27. doi: 10.1111/cns.13218 PubMed DOI PMC
Smyth LCD, Beschorner N, Nedergaard M, Kipnis J. Cellular contributions to glymphatic and lymphatic waste clearance in the brain. Cold Spring Harb Perspect Biol. (2024). doi: 10.1101/cshperspect.a041370 PubMed DOI
Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol. (2018) 13:379–94. doi: 10.1146/annurev-pathol-051217-111018 PubMed DOI PMC
Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. . Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. (2024) 13:e12404. doi: 10.1002/jev2.12404 PubMed DOI PMC
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. (2007) 9:654–9. doi: 10.1038/ncb1596 PubMed DOI
Kawikova I, Askenase PW. Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res. (2015) 1617:63–71. doi: 10.1016/j.brainres.2014.09.070 PubMed DOI PMC
Palay SL, Palade GE. The fine structure of neurons. J Biophys Biochem Cytol. (1955) 1:69–88. doi: 10.1083/jcb.1.1.69 PubMed DOI PMC
Mazurskyy A, Howitt J. Extracellular vesicles in neurological disorders. Subcell Biochem. (2021) 97:411–36. doi: 10.1007/978-3-030-67171-6_16 PubMed DOI
Paolicelli RC, Bergamini G, Rajendran L. Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience. (2019) 405:148–57. doi: 10.1016/j.neuroscience.2018.04.003 PubMed DOI
Ahmad S, Srivastava RK, Singh P, Naik UP, Srivastava AK. Role of extracellular vesicles in glia-neuron intercellular communication. Front Mol Neurosci. (2022) 15:844194. doi: 10.3389/fnmol.2022.844194 PubMed DOI PMC
Salikhova DI, Timofeeva AV, Golovicheva VV, Fatkhudinov TK, Shevtsova YA, Soboleva AG, et al. . Extracellular vesicles of human glial cells exert neuroprotective effects via brain miRNA modulation in a rat model of traumatic brain injury. Sci Rep. (2023) 13:20388. doi: 10.1038/s41598-023-47627-2 PubMed DOI PMC
Ghosh M, Pearse DD. The yin and yang of microglia-derived extracellular vesicles in CNS injury and diseases. Cells. (2024) 13:1834. doi: 10.3390/cells13221834 PubMed DOI PMC
Bahrini I, Song JH, Diez D, Hanayama R. Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci Rep. (2015) 5:7989. doi: 10.1038/srep07989 PubMed DOI PMC
Presumey J, Bialas AR, Carroll MC. Complement system in neural synapse elimination in development and disease. Adv Immunol. (2017) 135:53–79. doi: 10.1016/bs.ai.2017.06.004 PubMed DOI
Yang Y, Boza-Serrano A, Dunning CJR, Clausen BH, Lambertsen KL, Deierborg T. Inflammation leads to distinct populations of extracellular vesicles from microglia. J Neuroinflammation. (2018) 15:168. doi: 10.1186/s12974-018-1204-7 PubMed DOI PMC
Tsilioni I, Theoharides TC. Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1beta. J Neuroinflammation. (2018) 15:239. doi: 10.1186/s12974-018-1275-5 PubMed DOI PMC
Raffaele S, Gelosa P, Bonfanti E, Lombardi M, Castiglioni L, Cimino M, et al. . Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. Mol Ther. (2021) 29:1439–58. doi: 10.1016/j.ymthe.2020.12.009 PubMed DOI PMC
Guitart K, Loers G, Buck F, Bork U, Schachner M, Kleene R. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia. (2016) 64:896–910. doi: 10.1002/glia.22963 PubMed DOI
Chen W, Zheng P, Hong T, Wang Y, Liu N, He B, et al. . Astrocytes-derived exosomes induce neuronal recovery after traumatic brain injury via delivering gap junction alpha 1-20 k. J Tissue Eng Regener Med. (2020) 14:412–23. doi: 10.1002/term.v14.3 PubMed DOI
Kushwaha R, Li Y, Makarava N, Pandit NP, Molesworth K, Birukov KG, et al. . Reactive astrocytes associated with prion disease impair the blood brain barrier. Neurobiol Dis. (2023) 185:106264. doi: 10.1016/j.nbd.2023.106264 PubMed DOI PMC
Hou Y, Xie Y, Liu X, Chen Y, Zhou F, Yang B. Oxygen glucose deprivation-pretreated astrocyte-derived exosomes attenuates intracerebral hemorrhage (ICH)-induced BBB disruption through miR-27a-3p/ARHGAP25/Wnt/beta-catenin axis. Fluids Barriers CNS. (2024) 21:8. doi: 10.1186/s12987-024-00510-2 PubMed DOI PMC
Rouillard ME, Sutter PA, Durham OR, Willis CM, Crocker SJ. Astrocyte-derived extracellular vesicles (ADEVs): deciphering their influences in aging. Aging Dis. (2021) 12:1462–75. doi: 10.14336/AD.2021.0608 PubMed DOI PMC
Evalt ED, Govindaraj S, Jones MT, Ozsoy N, Chen H, Russell AE. Endoplasmic reticulum stress alters myelin associated protein expression and extracellular vesicle composition in human oligodendrocytes. Front Mol Biosci. (2024) 11:1432945. doi: 10.3389/fmolb.2024.1432945 PubMed DOI PMC
Kramer-Albers EM, Werner HB. Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles. Nat Rev Neurosci. (2023) 24:474–86. doi: 10.1038/s41583-023-00711-y PubMed DOI
Fruhbeis C, Kuo-Elsner WP, Muller C, Barth K, Peris L, Tenzer S, et al. . Oligodendrocytes support axonal transport and maintenance via exosome secretion. PloS Biol. (2020) 18:e3000621. doi: 10.1371/journal.pbio.3000621 PubMed DOI PMC
Mukherjee C, Kling T, Russo B, Miebach K, Kess E, Schifferer M, et al. . Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain. Cell Metab. (2020) 32:259–72 e10. doi: 10.1016/j.cmet.2020.05.019 PubMed DOI PMC
Agliardi C, Guerini FR, Zanzottera M, Bolognesi E, Caputo D, Rovaris M, et al. . Increased concentrations of P2X7R in oligodendrocyte derived extracellular vesicles of Multiple sclerosis patients. Neurobiol Dis. (2024) 199:106601. doi: 10.1016/j.nbd.2024.106601 PubMed DOI
Lee H, Lee J, Shin M, Park S. ANKS1A-deficiency aberrantly increases the entry of the protein transport machinery into the ependymal cilia. Mol Cells. (2023) 46:757–63. doi: 10.14348/molcells.2023.0153 PubMed DOI PMC
Bryniarski K, Fernandez-Messina L, Askenase PW, Nazimek K. Editorial: Extracellular vesicles as potent modulators of immunity. Front Cell Dev Biol. (2023) 11:1278498. doi: 10.3389/fcell.2023.1278498 PubMed DOI PMC
Ramos-Zaldivar HM, Polakovicova I, Salas-Huenuleo E, Corvalan AH, Kogan MJ, Yefi CP, et al. . Extracellular vesicles through the blood-brain barrier: a review. Fluids Barriers CNS. (2022) 19:60. doi: 10.1186/s12987-022-00359-3 PubMed DOI PMC
Du Y, Tan WL, Chen L, Yang ZM, Li XS, Xue X, et al. . Exosome transplantation from patients with schizophrenia causes schizophrenia-relevant behaviors in mice: an integrative multi-omics data analysis. Schizophr Bull. (2021) 47:1288–99. doi: 10.1093/schbul/sbab039 PubMed DOI PMC
Wei ZX, Xie GJ, Mao X, Zou XP, Liao YJ, Liu QS, et al. . Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology. (2020) 45:1050–8. doi: 10.1038/s41386-020-0622-2 PubMed DOI PMC
Kurtulmus A, Kocana CC, Toprak SF, Sozer S. The role of Extracellular Genomic Materials (EGMs) in psychiatric disorders. Transl Psychiatry. (2023) 13:262. doi: 10.1038/s41398-023-02549-5 PubMed DOI PMC
Wang X, Yang H, Liu C, Liu K. A new diagnostic tool for brain disorders: extracellular vesicles derived from neuron, astrocyte, and oligodendrocyte. Front Mol Neurosci. (2023) 16:1194210. doi: 10.3389/fnmol.2023.1194210 PubMed DOI PMC
Ban TA. Pharmacotherapy of mental illness–a historical analysis. Prog Neuropsychopharmacol Biol Psychiatry. (2001) 25:709–27. doi: 10.1016/S0278-5846(01)00160-9 PubMed DOI
Pastis I, Santos MG, Paruchuri A. Exploring the role of inflammation in major depressive disorder: beyond the monoamine hypothesis. Front Behav Neurosci. (2023) 17:1282242. doi: 10.3389/fnbeh.2023.1282242 PubMed DOI PMC
Correll CU, Howes OD. Treatment-resistant schizophrenia: definition, predictors, and therapy options. J Clin Psychiatry. (2021) 82:MY20096AH1C. doi: 10.4088/JCP.MY20096AH1C PubMed DOI
Honorato-Mauer J, Xavier G, Ota VK, Chehimi SN, Mafra F, Cuoco C, et al. . Alterations in microRNA of extracellular vesicles associated with major depression, attention-deficit/hyperactivity and anxiety disorders in adolescents. Transl Psychiatry. (2023) 13:47. doi: 10.1038/s41398-023-02326-4 PubMed DOI PMC
Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, et al. . Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. (2019) 366:628–31. doi: 10.1126/science.aax5440 PubMed DOI PMC
Nakazaki M, Morita T, Lankford KL, Askenase PW, Kocsis JD. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-beta upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J Extracell Vesicles. (2021) 10:e12137. doi: 10.1002/jev2.12137 PubMed DOI PMC
Tscherrig V, Cottagnoud S, Haesler V, Renz P, Surbek D, Schoeberlein A, et al. . MicroRNA cargo in wharton’s jelly MSC small extracellular vesicles: key functionality to in vitro prevention and treatment of premature white matter injury. Stem Cell Rev Rep. (2023) 19:2447–64. doi: 10.1007/s12015-023-10595-1 PubMed DOI PMC
Bodart-Santos V, de Carvalho LRP, de Godoy MA, Batista AF, Saraiva LM, Lima LG, et al. . Extracellular vesicles derived from human Wharton’s jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-beta oligomers. Stem Cell Res Ther. (2019) 10:332. doi: 10.1186/s13287-019-1432-5 PubMed DOI PMC
Joerger-Messerli MS, Oppliger B, Spinelli M, Thomi G, di Salvo I, Schneider P, et al. . Extracellular vesicles derived from wharton’s jelly mesenchymal stem cells prevent and resolve programmed cell death mediated by perinatal hypoxia-ischemia in neuronal cells. Cell Transplant. (2018) 27:168–80. doi: 10.1177/0963689717738256 PubMed DOI PMC
Bisaccia P, Magarotto F, D’Agostino S, Dedja A, Barbon S, Guidolin D, et al. . Extracellular vesicles from mesenchymal umbilical cord cells exert protection against oxidative stress and fibrosis in a rat model of bronchopulmonary dysplasia. Stem Cells Transl Med. (2024) 13:43–59. doi: 10.1093/stcltm/szad070 PubMed DOI PMC
Huang Y, Liu Z, Tan F, Hu Z, Lu M. Effects of the insulted neuronal cells-derived extracellular vesicles on the survival of umbilical cord-derived mesenchymal stem cells following cerebral ischemia/reperfusion injury. Oxid Med Cell Longev. (2020) 2020:9768713. doi: 10.1155/2020/9768713 PubMed DOI PMC
Lin TY, Chang TM, Huang HC. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells attenuate mast cell activation. Antioxidants (Basel). (2022) 11:2279. doi: 10.3390/antiox11112279 PubMed DOI PMC
Seifali E, Hassanzadeh G, Mahdavipour M, Mortezaee K, Moini A, Satarian L, et al. . Extracellular vesicles derived from human umbilical cord perivascular cells improve functional recovery in brain ischemic rat via the inhibition of apoptosis. Iran BioMed J. (2020) 24:347–60. doi: 10.29252/ibj.24.6.342 PubMed DOI PMC
Wang P, Yi T, Mao S, Li M. Neuroprotective mechanism of human umbilical cord mesenchymal stem cell-derived extracellular vesicles improving the phenotype polarization of microglia via the PI3K/AKT/Nrf2 pathway in vascular dementia. Synapse. (2023) 77:e22268. doi: 10.1002/syn.22268 PubMed DOI
Xue C, Ma X, Guan X, Feng H, Zheng M, Yang X. Small extracellular vesicles derived from umbilical cord mesenchymal stem cells repair blood-spinal cord barrier disruption after spinal cord injury through down-regulation of Endothelin-1 in rats. PeerJ. (2023) 11:e16311. doi: 10.7717/peerj.16311 PubMed DOI PMC
Li Q, Wang Z, Xing H, Wang Y, Guo Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol Ther Nucleic Acids. (2021) 23:1334–44. doi: 10.1016/j.omtn.2021.01.022 PubMed DOI PMC
Rohden F, Teixeira LV, Bernardi LP, Ferreira PCL, Colombo M, Teixeira GR, et al. . Functional Recovery Caused by Human Adipose Tissue Mesenchymal Stem Cell-Derived Extracellular Vesicles Administered 24 h after Stroke in Rats. Int J Mol Sci. (2021) 22:12860. doi: 10.3390/ijms222312860 PubMed DOI PMC
Katsuda T, Oki K, Ochiya T. Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer’s disease therapeutics. Methods Mol Biol. (2015) 1212:171–81. doi: 10.1007/7651_2014_98 PubMed DOI
Lv H, Li J, Che Y. miR-31 from adipose stem cell-derived extracellular vesicles promotes recovery of neurological function after ischemic stroke by inhibiting TRAF6 and IRF5. Exp Neurol. (2021) 342:113611. doi: 10.1016/j.expneurol.2021.113611 PubMed DOI
Wu H, Fan Y, Zhang M. Advanced progress in the role of adipose-derived mesenchymal stromal/stem cells in the application of central nervous system disorders. Pharmaceutics. (2023) 15:2637. doi: 10.3390/pharmaceutics15112637 PubMed DOI PMC
Askenase PW. Recommendation: Treatment of clinical long COVID encephalopathies with nasal administered mesenchymal stromal cell extracellular vesicles. Front Nanotechnol. (2022) 4:987117. doi: 10.3389/fnano.2022.987117 DOI
Turano E, Scambi I, Virla F, Bonetti B, Mariotti R. Extracellular vesicles from mesenchymal stem cells: towards novel therapeutic strategies for neurodegenerative diseases. Int J Mol Sci. (2023) 24:2917. doi: 10.3390/ijms24032917 PubMed DOI PMC
Dehghani L, Khojasteh A, Oraee Yazdani S, Oustad M, Soleimani M. Role of mesenchymal stem cells derived exosomes therapy in neuronal remodeling after ischemic stroke. Minerva Med. (2023) 114:388–9. doi: 10.23736/S0026-4806.19.06277-3 PubMed DOI
Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, et al. . Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng. (2019) 13:71. doi: 10.1186/s13036-019-0193-0 PubMed DOI PMC
Chen KH, Chen CH, Wallace CG, Yuen CM, Kao GS, Chen YL, et al. . Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget. (2016) 7:74537–56. doi: 10.18632/oncotarget.12902 PubMed DOI PMC
Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PloS One. (2014) 9:e88685. doi: 10.1371/journal.pone.0088685 PubMed DOI PMC
Moss LD, Sode D, Patel R, Lui A, Hudson C, Patel NA, et al. . Intranasal delivery of exosomes from human adipose derived stem cells at forty-eight hours post injury reduces motor and cognitive impairments following traumatic brain injury. Neurochem Int. (2021) 150:105173. doi: 10.1016/j.neuint.2021.105173 PubMed DOI PMC
Wen L, Wang YD, Shen DF, Zheng PD, Tu MD, You WD, et al. . Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury. Neural Regener Res. (2022) 17:2717–24. doi: 10.4103/1673-5374.339489 PubMed DOI PMC
Zhang ZW, Wei P, Zhang GJ, Yan JX, Zhang S, Liang J, et al. . Intravenous infusion of the exosomes derived from human umbilical cord mesenchymal stem cells enhance neurological recovery after traumatic brain injury via suppressing the NF-kappaB pathway. Open Life Sci. (2022) 17:189–201. doi: 10.1515/biol-2022-0022 PubMed DOI PMC
Zhuang Z, Liu M, Luo J, Zhang X, Dai Z, Zhang B, et al. . Exosomes derived from bone marrow mesenchymal stem cells attenuate neurological damage in traumatic brain injury by alleviating glutamate-mediated excitotoxicity. Exp Neurol. (2022) 357:114182. doi: 10.1016/j.expneurol.2022.114182 PubMed DOI
Khan MI, Jeong ES, Khan MZ, Shin JH, Kim JD. Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer’s pathogenesis by ameliorating neuroinflamation, and regulating the associated molecular pathways. Sci Rep. (2023) 13:15731. doi: 10.1038/s41598-023-42485-4 PubMed DOI PMC
Zhdanova DY, Poltavtseva RA, Svirshchevskaya EV, Bobkova NV. Effect of intranasal administration of multipotent mesenchymal stromal cell exosomes on memory of mice in alzheimer’s disease model. Bull Exp Biol Med. (2021) 170:575–82. doi: 10.1007/s10517-021-05109-3 PubMed DOI
Wang H, Liu Y, Li J, Wang T, Hei Y, Li H, et al. . Tail-vein injection of MSC-derived small extracellular vesicles facilitates the restoration of hippocampal neuronal morphology and function in APP/PS1 mice. Cell Death Discovery. (2021) 7:230. doi: 10.1038/s41420-021-00620-y PubMed DOI PMC
Hassan R, Rabea AA, Ragae A, Sabry D. The prospective role of mesenchymal stem cells exosomes on circumvallate taste buds in induced Alzheimer’s disease of ovariectomized albino rats: (Light and transmission electron microscopic study). Arch Oral Biol. (2020) 110:104596. doi: 10.1016/j.archoralbio.2019.104596 PubMed DOI
Cui GH, Wu J, Mou FF, Xie WH, Wang FB, Wang QL, et al. . Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J. (2018) 32:654–68. doi: 10.1096/fj.201700600R PubMed DOI
Ding M, Shen Y, Wang P, Xie Z, Xu S, Zhu Z, et al. . Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in alzheimer’s disease. Neurochem Res. (2018) 43:2165–77. doi: 10.1007/s11064-018-2641-5 PubMed DOI
Chen HX, Liang FC, Gu P, Xu BL, Xu HJ, Wang WT, et al. . Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis. (2020) 11:288. doi: 10.1038/s41419-020-2473-5 PubMed DOI PMC
He S, Wang Q, Chen L, He YJ, Wang X, Qu S. miR-100a-5p-enriched exosomes derived from mesenchymal stem cells enhance the anti-oxidant effect in a Parkinson’s disease model via regulation of Nox4/ROS/Nrf2 signaling. J Transl Med. (2023) 21:747. doi: 10.1186/s12967-023-04638-x PubMed DOI PMC
Mobahat M, Sadroddiny E, Nooshabadi VT, Ebrahimi-Barough S, Goodarzi A, Malekshahi ZV, et al. . Curcumin-loaded human endometrial stem cells derived exosomes as an effective carrier to suppress alpha-synuclein aggregates in 6OHDA-induced Parkinson’s disease mouse model. Cell Tissue Bank. (2023) 24:75–91. doi: 10.1007/s10561-022-10008-6 PubMed DOI
Zhang ZX, Zhou YJ, Gu P, Zhao W, Chen HX, Wu RY, et al. . Exosomes derived from human umbilical cord mesenchymal stem cells alleviate Parkinson’s disease and neuronal damage through inhibition of microglia. Neural Regener Res. (2023) 18:2291–300. doi: 10.4103/1673-5374.368300 PubMed DOI PMC
Lee M, Ban JJ, Kim KY, Jeon GS, Im W, Sung JJ, et al. . Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro . Biochem Biophys Res Commun. (2016) 479:434–9. doi: 10.1016/j.bbrc.2016.09.069 PubMed DOI
Li Z, Liu F, He X, Yang X, Shan F, Feng J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol. (2019) 67:268–80. doi: 10.1016/j.intimp.2018.12.001 PubMed DOI
Romanelli P, Bieler L, Scharler C, Pachler K, Kreutzer C, Zaunmair P, et al. . Extracellular vesicles can deliver anti-inflammatory and anti-scarring activities of mesenchymal stromal cells after spinal cord injury. Front Neurol. (2019) 10:1225. doi: 10.3389/fneur.2019.01225 PubMed DOI PMC
Ruppert KA, Nguyen TT, Prabhakara KS, Toledano Furman NE, Srivastava AK, Harting MT, et al. . Human mesenchymal stromal cell-derived extracellular vesicles modify microglial response and improve clinical outcomes in experimental spinal cord injury. Sci Rep. (2018) 8:480. doi: 10.1038/s41598-017-18867-w PubMed DOI PMC
Huang JH, Yin XM, Xu Y, Xu CC, Lin X, Ye FB, et al. . Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma. (2017) 34:3388–96. doi: 10.1089/neu.2017.5063 PubMed DOI
Zhang A, Bai Z, Yi W, Hu Z, Hao J. Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats. Neurosci Lett. (2021) 761:136124. doi: 10.1016/j.neulet.2021.136124 PubMed DOI
Liao K, Niu F, Hu G, Yang L, Dallon B, Villarreal D, et al. . Morphine-mediated release of miR-138 in astrocyte-derived extracellular vesicles promotes microglial activation. J Extracell Vesicles. (2020) 10:e12027. doi: 10.1002/jev2.12027 PubMed DOI PMC
Vujic T, Schvartz D, Furlani IL, Meister I, Gonzalez-Ruiz V, Rudaz S, et al. . Oxidative stress and extracellular matrix remodeling are signature pathways of extracellular vesicles released upon morphine exposure on human brain microvascular endothelial cells. Cells. (2022) 11:3926. doi: 10.3390/cells11233926 PubMed DOI PMC
Zhong XL, Huang Y, Du Y, He LZ, Chen YW, Cheng Y, et al. . Unlocking the therapeutic potential of exosomes derived from nasal olfactory mucosal mesenchymal stem cells: restoring synaptic plasticity, neurogenesis, and neuroinflammation in schizophrenia. Schizophr Bull. (2023) 50:600–14. doi: 10.1093/schbul/sbad172 PubMed DOI PMC
Tsivion-Visbord H, Perets N, Sofer T, Bikovski L, Goldshmit Y, Ruban A, et al. . Mesenchymal stem cells derived extracellular vesicles improve behavioral and biochemical deficits in a phencyclidine model of schizophrenia. Transl Psychiatry. (2020) 10:305. doi: 10.1038/s41398-020-00988-y PubMed DOI PMC
Chung DD, Mahnke AH, Pinson MR, Salem NA, Lai MS, Collins NP, et al. . Sex differences in the transcriptome of extracellular vesicles secreted by fetal neural stem cells and effects of chronic alcohol exposure. Biol Sex Differ. (2023) 14:19. doi: 10.1186/s13293-023-00503-0 PubMed DOI PMC
Chung DD, Pinson MR, Mahnke AH, Salem NA, Le KT, Payne EA, et al. . Dose-related shifts in proteome and function of extracellular vesicles secreted by fetal neural stem cells following chronic alcohol exposure. Heliyon. (2022) 8:e11348. doi: 10.1016/j.heliyon.2022.e11348 PubMed DOI PMC
Yoon KJ, Park S, Kwak SH, Moon HY. Effects of voluntary running wheel exercise-induced extracellular vesicles on anxiety. Front Mol Neurosci. (2021) 14:665800. doi: 10.3389/fnmol.2021.665800 PubMed DOI PMC
Zhao J, Yang J, Jiao J, Wang X, Zhao Y, Zhang L. Biomedical applications of artificial exosomes for intranasal drug delivery. Front Bioeng Biotechnol. (2023) 11:1271489. doi: 10.3389/fbioe.2023.1271489 PubMed DOI PMC
Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. . Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. (2011) 19:1769–79. doi: 10.1038/mt.2011.164 PubMed DOI PMC
Wang H, Sui H, Zheng Y, Jiang Y, Shi Y, Liang J, et al. . Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3beta pathway. Nanoscale. (2019) 11:7481–96. doi: 10.1039/C9NR01255A PubMed DOI
Liu L, Li Y, Peng H, Liu R, Ji W, Shi Z, et al. . Targeted exosome coating gene-chem nanocomplex as “nanoscavenger” for clearing alpha-synuclein and immune activation of Parkinson’s disease. Sci Adv. (2020) 6:eaba3967. doi: 10.1126/sciadv.aba3967 PubMed DOI PMC
Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. . Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. (2015) 207:18–30. doi: 10.1016/j.jconrel.2015.03.033 PubMed DOI PMC
Li J, Zhang H, Jiang Y, Li N, Zhu A, Zhang Y, et al. . The landscape of extracellular vesicles combined with intranasal delivery towards brain diseases. Nano Today. (2024) 55:102169. doi: 10.1016/j.nantod.2024.102169 DOI
Kim M, Lee Y, Lee M. Hypoxia-specific anti-RAGE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model. Nanoscale. (2021) 13:14166–78. doi: 10.1039/D0NR07516G PubMed DOI
Mattera VS, Pereyra Gerber P, Glisoni R, Ostrowski M, Verstraeten SV, Pasquini JM, et al. . Extracellular vesicles containing the transferrin receptor as nanocarriers of apotransferrin. J Neurochem. (2020) 155:327–38. doi: 10.1111/jnc.v155.3 PubMed DOI
Sun M, Yang J, Fan Y, Zhang Y, Sun J, Hu M, et al. . Beyond extracellular vesicles: hybrid membrane nanovesicles as emerging advanced tools for biomedical applications. Adv Sci (Weinh). (2023) 10:e2303617. doi: 10.1002/advs.202303617 PubMed DOI PMC
Wu X, Huang X, Zhu Q, Zhang J, Hu J, Song Y, et al. . Hybrid hair follicle stem cell extracellular vesicles co-delivering finasteride and gold nanoparticles for androgenetic alopecia treatment. J Control Release. (2024) 373:652–66. doi: 10.1016/j.jconrel.2024.07.066 PubMed DOI
Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, et al. . Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci U S A. (2015) 112:E1433–42. doi: 10.1073/pnas.1418401112 PubMed DOI PMC
Ela S, Mager I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discovery. (2013) 12:347–57. doi: 10.1038/nrd3978 PubMed DOI
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. (2017) 38:754–63. doi: 10.1038/aps.2017.12 PubMed DOI PMC
Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. (2019) 88:487–514. doi: 10.1146/annurev-biochem-013118-111902 PubMed DOI
Jang H, Hu PC, Jung S, Kim WY, Kim SM, Malmstadt N, et al. . Automated formation of multicomponent-encapuslating vesosomes using continuous flow microcentrifugation. Biotechnol J. (2013) 8:1341–6. doi: 10.1002/biot.201200388 PubMed DOI PMC
Lamichhane TN, Jay SM. Production of extracellular vesicles loaded with therapeutic cargo. Methods Mol Biol. (2018) 1831:37–47. doi: 10.1007/978-1-4939-8661-3_4 PubMed DOI PMC
Tian M, Ticer T, Wang Q, Walker S, Pham A, Suh A, et al. . Adipose-derived biogenic nanoparticles for suppression of inflammation. Small. (2020) 16:e1904064. doi: 10.1002/smll.201904064 PubMed DOI
Li YJ, Wu JY, Liu J, Xu W, Qiu X, Huang S, et al. . Artificial exosomes for translational nanomedicine. J Nanobiotechnology. (2021) 19:242. doi: 10.1186/s12951-021-00986-2 PubMed DOI PMC
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. BioMed Pharmacother. (2024) 178:117248. doi: 10.1016/j.biopha.2024.117248 PubMed DOI
Singh S, Shukla R. Nanovesicular-mediated intranasal drug therapy for neurodegenerative disease. AAPS PharmSciTech. (2023) 24:179. doi: 10.1208/s12249-023-02625-5 PubMed DOI
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. (2011) 29:341–5. doi: 10.1038/nbt.1807 PubMed DOI
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol. (2019) 181:101665. doi: 10.1016/j.pneurobio.2019.101665 PubMed DOI
Cooper JM, Wiklander PB, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M, et al. . Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord. (2014) 29:1476–85. doi: 10.1002/mds.25978 PubMed DOI PMC
Tang B, Zeng W, Song LL, Wang HM, Qu LQ, Lo HH, et al. . Extracellular vesicle delivery of neferine for the attenuation of neurodegenerative disease proteins and motor deficit in an alzheimer’s disease mouse model. Pharm (Basel). (2022) 15:83. doi: 10.1159/000520311 PubMed DOI PMC
Tolomeo AM, Zuccolotto G, Malvicini R, De Lazzari G, Penna A, Franco C, et al. . Biodistribution of intratracheal, intranasal, and intravenous injections of human mesenchymal stromal cell-derived extracellular vesicles in a mouse model for drug delivery studies. Pharmaceutics. (2023) 15:548. doi: 10.3390/pharmaceutics15020548 PubMed DOI PMC
Shen W, You T, Xu W, Xie Y, Wang Y, Cui M. Rapid and Widespread Distribution of Intranasal Small Extracellular Vesicles Derived from Mesenchymal Stem Cells throughout the Brain Potentially via the Perivascular Pathway. Pharmaceutics. (2023) 15:2578. doi: 10.3390/pharmaceutics15112578 PubMed DOI PMC
Pardridge WM. A historical review of brain drug delivery. Pharmaceutics. (2022) 14:1283. doi: 10.3390/pharmaceutics14061283 PubMed DOI PMC
Oliveira Silva R, Counil H, Rabanel JM, Haddad M, Zaouter C, Ben Khedher MR, et al. . Donepezil-loaded nanocarriers for the treatment of alzheimer’s disease: superior efficacy of extracellular vesicles over polymeric nanoparticles. Int J Nanomedicine. (2024) 19:1077–96. doi: 10.2147/IJN.S449227 PubMed DOI PMC
Kompanikova P, Bryja V. Regulation of choroid plexus development and its functions. Cell Mol Life Sci. (2022) 79:304. doi: 10.1007/s00018-022-04314-1 PubMed DOI PMC
Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiol Rev. (2022) 102:1025–151. doi: 10.1152/physrev.00031.2020 PubMed DOI PMC
Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, et al. . CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. (2018) 21:1380–91. doi: 10.1038/s41593-018-0227-9 PubMed DOI PMC
Seino S, Ikehata H, Tanabe M, Umeda T, Tomiyama T, Tanaka A, et al. . Investigating the efficacy of nasal administration for delivering magnetic nanoparticles into the brain for magnetic particle imaging. J Control Release. (2024) 367:515–21. doi: 10.1016/j.jconrel.2024.01.027 PubMed DOI
Del Bigio MR. History of research concerning the ependyma: a view from inside the human brain. Front Cell Neurosci. (2023) 17:1320369. doi: 10.3389/fncel.2023.1320369 PubMed DOI PMC
Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun. (2022) 4:fcac288. doi: 10.1093/braincomms/fcac288 PubMed DOI PMC
Melloni A, Liu L, Kashinath V, Abdi R, Shah K. Meningeal lymphatics and their role in CNS disorder treatment: moving past misconceptions. Front Neurosci. (2023) 17:1184049. doi: 10.3389/fnins.2023.1184049 PubMed DOI PMC
Rowsthorn E, Pham W, Nazem-Zadeh MR, Law M, Pase MP, Harding IH. Imaging the neurovascular unit in health and neurodegeneration: a scoping review of interdependencies between MRI measures. Fluids Barriers CNS. (2023) 20:97. doi: 10.1186/s12987-023-00499-0 PubMed DOI PMC
Gotoh S, Kawabori M, Fujimura M. Intranasal administration of stem cell-derived exosomes for central nervous system diseases. Neural Regener Res. (2024) 19:1249–55. doi: 10.4103/1673-5374.385875 PubMed DOI PMC
Louro AF, Meliciano A, Alves PM, Costa MHG, Serra M. A roadmap towards manufacturing extracellular vesicles for cardiac repair. Trends Biotechnol. (2024) 42:1305–22. doi: 10.1016/j.tibtech.2024.03.010 PubMed DOI
Selvam S, Midhun BT, Bhowmick T, Chandru A. Bioprinting of exosomes: Prospects and challenges for clinical applications. Int J Bioprint. (2023) 9:690. doi: 10.18063/ijb.690 PubMed DOI PMC
Li G, Chen T, Dahlman J, Eniola-Adefeso L, Ghiran IC, Kurre P, et al. . Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases. J Extracell Vesicles. (2023) 12:e12305. doi: 10.1002/jev2.12305 PubMed DOI PMC
Hood JL. The association of exosomes with lymph nodes. Semin Cell Dev Biol. (2017) 67:29–38. doi: 10.1016/j.semcdb.2016.12.002 PubMed DOI
Bryniarski K, Nazimek K. Advances in the current understanding of the role of extracellular vesicles in allergy, autoimmunity and immune regulation. Int J Mol Sci. (2022) 23:14311. doi: 10.3390/ijms232214311 PubMed DOI PMC
Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. (2020) 29:747–54. doi: 10.1089/scd.2020.0080 PubMed DOI PMC
Sengupta V, Sengupta S, Lazo A, Jr., Hicok KC, Moseley T. Response to Lim et al. re: “Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem Cells Dev. (2020) 29:879–81. doi: 10.1089/scd.2020.0095 PubMed DOI PMC
Zhu YG, Shi MM, Monsel A, Dai CX, Dong X, Shen H, et al. . Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: a pilot study. Stem Cell Res Ther. (2022) 13:220. doi: 10.1186/s13287-022-02900-5 PubMed DOI PMC
Chu M, Wang H, Bian L, Huang J, Wu D, Zhang R, et al. . Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia. Stem Cell Rev Rep. (2022) 18:2152–63. doi: 10.1007/s12015-022-10398-w PubMed DOI PMC
Pak H, Hadizadeh A, Heirani-Tabasi A, Soleimani M, Asbagh RA, Fazeli MS, et al. . Safety and efficacy of injection of human placenta mesenchymal stem cells derived exosomes for treatment of complex perianal fistula in non-Crohn’s cases: Clinical trial phase I. J Gastroenterol Hepatol. (2023) 38:539–47. doi: 10.1111/jgh.16110 PubMed DOI
Kwon HH, Yang SH, Lee J, Park BC, Park KY, Jung JY, et al. . Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: A 12-week prospective, double-blind, randomized, split-face study. Acta Derm Venereol. (2020) 100:adv00310. doi: 10.2340/00015555-3666 PubMed DOI PMC
Johnson J, Law SQK, Shojaee M, Hall AS, Bhuiyan S, Lim MBL, et al. . First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing. J Extracell Vesicles. (2023) 12:e12332. doi: 10.1002/jev2.12332 PubMed DOI PMC
Park GH, Kwon HH, Seok J, Yang SH, Lee J, Park BC, et al. . Efficacy of combined treatment with human adipose tissue stem cell-derived exosome-containing solution and microneedling for facial skin aging: A 12-week prospective, randomized, split-face study. J Cosmet Dermatol. (2023) 22:3418–26. doi: 10.1111/jocd.v22.12 PubMed DOI
Civelek E, Kabatas S, Savrunlu EC, Diren F, Kaplan N, Ofluoglu D, et al. . Effects of exosomes from mesenchymal stem cells on functional recovery of a patient with total radial nerve injury: A pilot study. World J Stem Cells. (2024) 16:19–32. doi: 10.4252/wjsc.v16.i1.19 PubMed DOI PMC
Dehghani L, Khojasteh A, Soleimani M, Oraee-Yazdani S, Keshel SH, Saadatnia M, et al. . Safety of intraparenchymal injection of allogenic placenta mesenchymal stem cells derived exosome in patients undergoing decompressive craniectomy following Malignant middle cerebral artery infarct, A pilot randomized clinical trial. Int J Prev Med. (2022) 13:7. doi: 10.4103/ijpvm.ijpvm_441_21 PubMed DOI PMC
Xie X, Song Q, Dai C, Cui S, Tang R, Li S, et al. . Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate Alzheimer’s disease: a phase I/II clinical trial. Gen Psychiatr. (2023) 36:e101143. doi: 10.1136/gpsych-2023-101143 PubMed DOI PMC
Kumar A, Nader MA, Deep G. Emergence of extracellular vesicles as “Liquid biopsy” for neurological disorders: boom or bust. Pharmacol Rev. (2024) 76:199–227. doi: 10.1124/pharmrev.122.000788 PubMed DOI PMC
Jiang-Xie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health. Neuron. (2024) 113:71–8. doi: 10.1016/j.neuron.2024.09.017 PubMed DOI PMC
Wang H, Yee D. I-SPY 2: a neoadjuvant adaptive clinical trial designed to improve outcomes in high-risk breast cancer. Curr Breast Cancer Rep. (2019) 11:303–10. doi: 10.1007/s12609-019-00334-2 PubMed DOI PMC