Activation of Wnt/β-catenin signaling is critical for the tumorigenesis of choroid plexus
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
39215664
PubMed Central
PMC11726344
DOI
10.1093/neuonc/noae176
PII: 7746517
Knihovny.cz E-zdroje
- Klíčová slova
- APC, Wnt signaling, brain tumor, choroid plexus organoid, rare childhood cancer,
- MeSH
- beta-katenin * metabolismus genetika MeSH
- karcinogeneze * metabolismus patologie MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- nádory plexus chorioideus * patologie metabolismus genetika MeSH
- proliferace buněk MeSH
- regulace genové exprese u nádorů MeSH
- signální dráha Wnt * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-katenin * MeSH
BACKGROUND: The choroid plexus (ChP) is the secretory epithelial structure located in the brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of tumor pathology and the limited availability of valid models. METHODS: Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and overexpression of Wnt/β-catenin pathway genes. A 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC. RESULTS: We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knockout of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of the Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelial cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids. CONCLUSIONS: Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.
Central Institute of Mental Health Medical Faculty Mannheim Heidelberg University Mannheim Germany
Centre for Organismal Studies Heidelberg University Heidelberg Germany
Department of Neurosciences Rita Levi Montalcini Turin University Turin Italy
Department of Veterinary Sciences Turin University Grugliasco Italy
Division of Signal Transduction and Growth Control DKFZ ZMBH Alliance Heidelberg Germany
Faculty of Biosciences Heidelberg University Heidelberg Germany
German Cancer Research Center Heidelberg Germany
Hector Institute for Translational Brain Research Mannheim Germany
Institute of Neuropathology University Hospital Münster Münster Germany
Interdisciplinary Center for Neuroscience Heidelberg University Heidelberg Germany
Schaller Research Group German Cancer Research Center Heidelberg Germany
Zentrum für Molekulare Biologie der Universität Heidelberg DKFZ ZMBH Alliance Heidelberg Germany
Zobrazit více v PubMed
Lafay-Cousin L, Keene D, Carret AS, et al.Choroid plexus tumors in children less than 36 months: The Canadian Pediatric Brain Tumor Consortium (CPBTC) experience. Childs Nerv Syst. 2011;27(2):259–264. PubMed
Louis DN, Ohgaki H, Wiestler OD, et al.The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. PubMed PMC
McCall T, Binning M, Blumenthal DT, Jensen RL.. Variations of disseminated choroid plexus papilloma: 2 case reports and a review of the literature. Surg Neurol. 2006;66(1):62–7; discussion 67. PubMed
Cannon DM, Mohindra P, Gondi V, Kruser TJ, Kozak KR.. Choroid plexus tumor epidemiology and outcomes: Implications for surgical and radiotherapeutic management. J Neurooncol. 2015;121(1):151–157. PubMed
Hosmann A, Hinker F, Dorfer C, et al.Management of choroid plexus tumors-an institutional experience. Acta Neurochir (Wien). 2019;161(4):745–754. PubMed PMC
Wolff JE, Van Gool SW, Kutluk T, et al.Final results of the choroid plexus tumor study CPT-SIOP-2000. J Neurooncol. 2022;156(3):599–613. PubMed PMC
Donovan MJ, Yunis EJ, DeGirolami U, Fletcher JA, Schofield DE.. Chromosome aberrations in choroid plexus papillomas. Genes Chromosomes Cancer. 1994;11(4):267–270. PubMed
Li YS, Fan YS, Armstrong RF.. Endoreduplication and telomeric association in a choroid plexus carcinoma. Cancer Genet Cytogenet. 1996;87(1):7–10. PubMed
Merino DM, Shlien A, Villani A, et al.Molecular characterization of choroid plexus tumors reveals novel clinically relevant subgroups. Clin Cancer Res. 2015;21(1):184–192. PubMed
Tabori U, Shlien A, Baskin B, et al.TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol. 2010;28(12):1995–2001. PubMed
Thomas C, Soschinski P, Zwaig M, et al.The genetic landscape of choroid plexus tumors in children and adults. Neuro Oncol. 2021;23(4):650–660. PubMed PMC
Tong Y, Merino D, Nimmervoll B, et al.Cross-species genomics identifies TAF12, NFYC, and RAD54L as choroid plexus carcinoma oncogenes. Cancer Cell. 2015;27(5):712–727. PubMed PMC
Li L, Grausam KB, Wang J, et al.Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nat Cell Biol. 2016;18(4):418–430. PubMed PMC
Shannon ML, Fame RM, Chau KF, et al.Mice expressing Myc in neural precursors develop choroid plexus and ciliary body tumors. Am J Pathol. 2018;188(6):1334–1344. PubMed PMC
El Nagar S, Zindy F, Moens C, et al.A new genetically engineered mouse model of choroid plexus carcinoma. Biochem Biophys Res Commun. 2018;496(2):568–574. PubMed PMC
Wang J, Merino DM, Light N, et al.Myc and loss of p53 cooperate to drive formation of choroid plexus carcinoma. Cancer Res. 2019;79(9):2208–2219. PubMed PMC
Merve A, Zhang X, Pomella N, et al.c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7(1):95. PubMed PMC
Filbin M, Monje M.. Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat Med. 2019;25(3):367–376. PubMed PMC
Currle DS, Cheng X, Hsu CM, Monuki ES.. Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development. 2005;132(15):3549–3559. PubMed
Grove EA, Tole S, Limon J, Yip L, Ragsdale CW.. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development. 1998;125(12):2315–2325. PubMed
Furuta Y, Piston DW, Hogan BL.. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development. 1997;124(11):2203–2212. PubMed
Lee SM, Tole S, Grove E, McMahon AP.. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development. 2000;127(3):457–467. PubMed
Kompanikova P, Bryja V.. Regulation of choroid plexus development and its functions. Cell Mol Life Sci. 2022;79(6):304. PubMed PMC
Dani N, Herbst RH, McCabe C, et al.A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell. 2021;184(11):3056–3074.e21. PubMed PMC
Kazanskaya O, Glinka A, del Barco Barrantes I, et al.R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev Cell. 2004;7(4):525–534. PubMed
Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–779. PubMed
Heigwer F, Kerr G, Boutros M.. E-CRISP: Fast CRISPR target site identification. Nat Methods. 2014;11(2):122–123. PubMed
Sanjana NE, Shalem O, Zhang F.. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–784. PubMed PMC
Zheng W, Zhao Q.. Establishment and characterization of an immortalized Z310 choroidal epithelial cell line from murine choroid plexus. Brain Res. 2002;958(2):371–380. PubMed PMC
Ishiwata I, Ishiwata C, Ishiwata E, et al.Establishment and characterization of a human malignant choroids plexus papilloma cell line (HIBCPP). Hum Cell. 2005;18(1):67–72. PubMed
Jabali A, Hoffrichter A, Uzquiano A, et al.Human cerebral organoids reveal progenitor pathology in EML1-linked cortical malformation. EMBO Rep. 2022;23(5):e54027. PubMed PMC
Ho KH, Patrizi A.. Assessment of common housekeeping genes as reference for gene expression studies using RT-qPCR in mouse choroid plexus. Sci Rep. 2021;11(1):3278. PubMed PMC
Hampf M, Gossen M.. A protocol for combined Photinus and Renilla luciferase quantification compatible with protein assays. Anal Biochem. 2006;356(1):94–99. PubMed
Eisemann T, Costa B, Strelau J, et al.An advanced glioma cell invasion assay based on organotypic brain slice cultures. BMC Cancer. 2018;18(1):103. PubMed PMC
Hasselblatt M, Mertsch S, Koos B, et al.TWIST-1 is overexpressed in neoplastic choroid plexus epithelial cells and promotes proliferation and invasion. Cancer Res. 2009;69(6):2219–2223. PubMed PMC
Kaiser K, Jang A, Kompanikova P, et al.MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus. Development. 2021;148(10):dev192054. PubMed PMC
Parichha A, Suresh V, Chatterjee M, et al.Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate. Nat Commun. 2022;13(1):633. PubMed PMC
Tan SH, Barker N.. Wnt signaling in adult epithelial stem cells and cancer. Prog Mol Biol Transl Sci. 2018;153:21–79. PubMed
Zhang L, Ren R, Yang X, et al.Oncogenic role of early growth response-1 in liver cancer through the regulation of the microRNA-675/sestrin 3 and the Wnt/beta-catenin signaling pathway. Bioengineered. 2021;12(1):5305–5322. PubMed PMC
Poggi L, Casarosa S, Carl M.. An eye on the wnt inhibitory factor Wif1. Front Cell Dev Biol. 2018;6:167. PubMed PMC
Consortium ITP-CAWG. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93. PubMed PMC
Scott AJ, Chiang C, Hall IM.. Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes. Genome Res. 2021;31(12):2249–2257. PubMed PMC
Symmons O, Uslu VV, Tsujimura T, et al.Functional and topological characteristics of mammalian regulatory domains. Genome Res. 2014;24(3):390–400. PubMed PMC
Chua EHZ, Yasar S, Harmston N.. The importance of considering regulatory domains in genome-wide analyses - the nearest gene is often wrong! Biol Open. 2022;11(4):bio059091. PubMed PMC
Matsuno Y, Hyodo M, Suzuki M, et al.Replication-stress-associated DSBs induced by ionizing radiation risk genomic destabilization and associated clonal evolution. iScience. 2021;24(4):102313. PubMed PMC
Matsuno Y, Kusumoto-Matsuo R, Manaka Y, Asai H, Yoshioka KI.. Echoed induction of nucleotide variants and chromosomal structural variants in cancer cells. Sci Rep. 2022;12(1):20964. PubMed PMC
Richards S, Aziz N, Bale S, et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. PubMed PMC
Horak P, Griffith M, Danos AM, et al.Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): Joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet Med. 2022;24(5):986–998. PubMed PMC
Diederichs S, Bartsch L, Berkmann JC, et al.The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med. 2016;8(5):442–457. PubMed PMC
Zhao Z, Xu Q, Wei R, et al.Cancer-associated dynamics and potential regulators of intronic polyadenylation revealed by IPAFinder using standard RNA-seq data. Genome Res. 2021;31(11):2095–2106. PubMed PMC
Jung H, Lee KS, Choi JK.. Comprehensive characterisation of intronic mis-splicing mutations in human cancers. Oncogene. 2021;40(7):1347–1361. PubMed PMC
Chen F, Zhang Y, Creighton CJ.. Systematic identification of non-coding somatic single nucleotide variants associated with altered transcription and DNA methylation in adult and pediatric cancers. NAR Cancer. 2021;3(1):zcab001. PubMed PMC
Crawford JR, IsaacsH, Jr. Perinatal (fetal and neonatal) choroid plexus tumors: a review. Childs Nerv Syst. 2019;35(6):937–944. PubMed
Grobner SN, Worst BC, Weischenfeldt J, et al.; ICGC PedBrain-Seq Project. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321–327. PubMed
Davidson G, Niehrs C.. Emerging links between CDK cell cycle regulators and Wnt signaling. Trends Cell Biol. 2010;20(8):453–460. PubMed
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M.. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–D894. PubMed PMC
Tomm M, Koch A, Mertsch S, et al.Role of Wnt inhibitory factor-1 and Wnt/wingless signaling in choroid plexus tumors. Pediatr Blood Cancer. 2009;53(6):1152–1155. PubMed
Nentwig A, Higgins RJ, Francey T, et al.Aberrant E-cadherin, beta-catenin, and glial fibrillary acidic protein (GFAP) expression in canine choroid plexus tumors. J Vet Diagn Invest. 2012;24(1):14–22. PubMed
Jung YS, Park JI.. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond beta-catenin and the destruction complex. Exp Mol Med. 2020;52(2):183–191. PubMed PMC
Zhang Y, Liu X, Li A, Tang X.. A pan-cancer analysis on the carcinogenic effect of human adenomatous polyposis coli. PLoS One. 2022;17(3):e0265655. PubMed PMC
Pellegrini L, Bonfio C, Chadwick J, et al.Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;369(6500). PubMed PMC
Law SM, Zheng JJ.. Premise and peril of Wnt signaling activation through GSK-3beta inhibition. iScience. 2022;25(4):104159. PubMed PMC
Albrecht S, Rouah E, Becker LE, Bruner J.. Transthyretin immunoreactivity in choroid plexus neoplasms and brain metastases. Mod Pathol. 1991;4(5):610–614. PubMed
Seeley ES, Carriere C, Goetze T, Longnecker DS, Korc M.. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 2009;69(2):422–430. PubMed PMC
Choi EJ, Sloma EA, Miller AD.. Kir7.1 immunoreactivity in canine choroid plexus tumors. J Vet Diagn Invest. 2016;28(4):464–468. PubMed
Langford MB, O’Leary CJ, Veeraval L, et al.WNT5a regulates epithelial morphogenesis in the developing choroid plexus. Cereb Cortex. 2020;30(6):3617–3631. PubMed
Tong K, Pellon-Cardenas O, Sirihorachai VR, et al.Degree of tissue differentiation dictates susceptibility to BRAF-driven colorectal cancer. Cell Rep. 2017;21(13):3833–3845. PubMed PMC
Jogi A, Vaapil M, Johansson M, Pahlman S.. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups J Med Sci. 2012;117(2):217–224. PubMed PMC
Kim W, Kim M, Jho EH.. Wnt/beta-catenin signalling: From plasma membrane to nucleus. Biochem J. 2013;450(1):9–21. PubMed
Steinhart Z, Pavlovic Z, Chandrashekhar M, et al.Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med. 2017;23(1):60–68. PubMed
Chidiac R, Abedin M, Macleod G, et al.A Norrin/Wnt surrogate antibody stimulates endothelial cell barrier function and rescues retinopathy. EMBO Mol Med. 2021;13(7):e13977. PubMed PMC
Martin M, Vermeiren S, Bostaille N, et al.Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science. 2022;375(6582):eabm4459. PubMed
Yang H, Wang Y, Wang P, Zhang N, Wang P.. Tumor organoids for cancer research and personalized medicine. Cancer Biol Med. 2021;19(3):319–332. PubMed PMC