Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.
- MeSH
- cirkadiánní hodiny * fyziologie MeSH
- cirkadiánní rytmus fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- nucleus suprachiasmaticus * metabolismus fyziologie MeSH
- plexus chorioideus * metabolismus fyziologie MeSH
- transkripční faktory ARNTL metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The choroid plexus (ChP) in the brain ventricles has a major influence on brain homeostasis. In this study, we aimed to determine whether the circadian clock located in ChP is affected by chronodisruption caused by misalignment with the external light/dark cycle and/or inflammation. Adult mPer2Luc mice were maintained in the LD12:12 cycle or exposed to one of two models of chronic chronodisruption - constant light for 22-25 weeks (cLL) or 6-hour phase advances of the LD12:12 cycle repeated weekly for 12 weeks (cLD-shifts). Locomotor activity was monitored before the 4th ventricle ChP and suprachiasmatic nuclei (SCN) explants were recorded in real time for PER2-driven population and single-cell bioluminescence rhythms. In addition, plasma immune marker concentrations and gene expression in ChP, prefrontal cortex, hippocampus and cerebellum were analyzed. cLL dampened the SCN clock but did not shorten the inactivity interval (sleep). cLD-shifts had no effect on the SCN clock, but transiently affected sleep duration and fragmentation. Both chronodisruption protocols dampened the ChP clock. Although immune markers were elevated in plasma and hippocampus, levels in ChP were unaffected, and unlike the liver clock, the ChP clock was resistant to lipopolysaccharide treatment. Importantly, both chronodisruption protocols reduced glucocorticoid signaling in ChP. The data demonstrate the high resistance of the ChP clock to inflammation, highlighting its role in protecting the brain from neuroinflammation, and on the other hand its high sensitivity to chronodisruption. Our results provide a novel link between human lifestyle-induced chronodisruption and the impairment of ChP-dependent brain homeostasis.
- MeSH
- chronická lymfatická leukemie * MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní proteiny Period genetika metabolismus MeSH
- cirkadiánní rytmus fyziologie MeSH
- lidé MeSH
- myši MeSH
- plexus chorioideus metabolismus MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.
Lithium is an effective mood stabilizer, but the mechanism of its therapeutic action is not well understood. We investigated the effect of lithium on the circadian clock located in the ventricle barrier complex containing the choroid plexus (CP), a part of the glymphatic system that influences gross brain function via the production of cerebrospinal fluid. The mPer2Luc mice were injected with lithium chloride (LiCl) or vehicle, and their effects on the clock gene Nr1d1 in CP were detected by RT qPCR. CP organotypic explants were prepared to monitor bioluminescence rhythms in real time and examine the responses of the CP clock to LiCl and inhibitors of glycogen synthase kinase-3 (CHIR-99021) and protein kinase C (chelerythrine). LiCl affected Nr1d1 expression levels in CP in vivo and dose-dependently delayed the phase and prolonged the period of the CP clock in vitro. LiCl and CHIR-99021 had different effects on 1] CP clock parameters (amplitude, period, phase), 2] dexamethasone-induced phase shifts of the CP clock, and 3] dynamics of PER2 degradation and de novo accumulation. LiCl-induced phase delays were significantly reduced by chelerythrine, suggesting the involvement of PKC activity. The effects on the CP clock may be involved in the therapeutic effects of lithium and hypothetically improve brain function in psychiatric patients by aligning the function of the CP clock-related glymphatic system with the sleep-wake cycle. Importantly, our data argue for personalized timing of lithium treatment in BD patients.
- MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní proteiny Period genetika MeSH
- cirkadiánní rytmus genetika MeSH
- lithium farmakologie MeSH
- myši MeSH
- plexus chorioideus metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The epithelial cells of choroid plexus (CP) in brain ventricles produce cerebrospinal fluid and act as the blood-cerebrospinal fluid barrier. In this study, we confirmed that CP in the 4th ventricle is composed of cellular oscillators that all harbor glucocorticoid receptors and are mutually synchronized to produce a robust clock gene expression rhythm detectable at the tissue level in vivo and in vitro. Animals lacking glucocorticoids (GCs) due to surgical removal of adrenal glands had Per1, Per2, Nr1d1 and Bmal1 clock gene rhythmicity in their CP significantly dampened, whereas subjecting them to daily bouts of synthetic GC analog, dexamethasone (DEX), reinforced those rhythms. We verified these in vivo effects using an in vitro model of organotypic CP explants; depending on the time of its application, DEX significantly increased the amplitude and efficiently reset the phase of the CP clock. The results are the first description of a PRC for a non-neuronal clock in the brain, demonstrating that CP clock shares some properties with the non-neuronal clocks elsewhere in the body. Finally, we found that DEX exhibited multiple synergic effects on the CP clock, including acute activation of Per1 expression and change of PER2 protein turnover rate. The DEX-induced shifts of the CP clock were partially mediated via PKA-ERK1/2 pathway. The results provide the first evidence that the GC rhythm strengthens and entrains the clock in the CP helping thus fine-tune the brain environment according to time of day.
- MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní proteiny Period genetika metabolismus MeSH
- dexamethason MeSH
- glukokortikoidy metabolismus MeSH
- MAP kinasový signální systém MeSH
- nadledviny metabolismus MeSH
- nucleus suprachiasmaticus metabolismus MeSH
- plexus chorioideus metabolismus MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1β (IL-1β) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.
- MeSH
- analýza jednotlivých buněk MeSH
- buněčná diferenciace genetika MeSH
- buněčný rodokmen genetika MeSH
- epitelové buňky metabolismus MeSH
- hematoencefalická bariéra metabolismus MeSH
- mozek metabolismus fyziologie MeSH
- myši inbrední C57BL MeSH
- myši embryologie MeSH
- nemoci mozku genetika patofyziologie MeSH
- plexus chorioideus embryologie metabolismus fyziologie MeSH
- signální transdukce MeSH
- stárnutí fyziologie MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši embryologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.
WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.
- MeSH
- biologický transport MeSH
- lidé MeSH
- lipoproteiny MeSH
- morfogeneze MeSH
- myši inbrední ICR MeSH
- plexus chorioideus metabolismus MeSH
- protein Wnt 5a genetika metabolismus MeSH
- rombencefalon embryologie metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The choroid plexus (CP) of brain ventricles forms the blood-cerebrospinal fluid (blood-CSF) barrier that is involved in many diseases affecting the central nervous system (CNS). We used ED1 and ED2 immunostaining to investigate epiplexus cell changes in rat CP after chronic constriction injury (CCI). In contrast to naïve CP, the CP of sham-operated rats showed an increase in the number of ED1+ cells of a similar magnitude during all periods of survival up to 3 weeks, while the number of ED2+ increased only at 3 days from operation. In comparison to naïve and sham-operated animals, the number of ED1+ and ED2+ cells in the epiplexus position increased with the duration of nerve compression. We detected no or negligible cell proliferation in the CP after sham- or CCI-operation. This suggests that increased number of ED1+ and ED2+ cells in the epiplexus position of the CP is derived from peripheral monocytes passing through altered blood-CSF barrier. The changes in epiplexus cells indicate that the CP reacts to tissue injury after the surgical approach itself and that the response to peripheral nerve lesion is greater. This suggests a role for an altered blood-CSF barrier allowing for propagation of signal molecules from damaged tissue and nerve to the CNS.
- MeSH
- krysa rodu rattus MeSH
- makrofágy metabolismus patologie MeSH
- plexus chorioideus metabolismus patologie MeSH
- poranění periferního nervu metabolismus patologie MeSH
- potkani Wistar MeSH
- stenóza MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH