Contrast enhanced X-ray computed tomography imaging of amyloid plaques in Alzheimer disease rat model on lab based micro CT system

. 2021 Mar 16 ; 11 (1) : 5999. [epub] 20210316

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33727592
Odkazy

PubMed 33727592
PubMed Central PMC7966753
DOI 10.1038/s41598-021-84579-x
PII: 10.1038/s41598-021-84579-x
Knihovny.cz E-zdroje

Amyloid plaques are small (~ 50 μm), highly-dense aggregates of amyloid beta (Aβ) protein in brain tissue, supposed to play a key role in pathogenesis of Alzheimer's disease (AD). Plaques´ in vivo detection, spatial distribution and quantitative characterization could be an essential marker in diagnostics and evaluation of AD progress. However, current imaging methods in clinics possess substantial limits in sensitivity towards Aβ plaques to play a considerable role in AD screening. Contrast enhanced X-ray micro computed tomography (micro CT) is an emerging highly sensitive imaging technique capable of high resolution visualization of rodent brain. In this study we show the absorption based contrast enhanced X-ray micro CT imaging is viable method for detection and 3D analysis of Aβ plaques in transgenic rodent models of Alzheimer's disease. Using iodine contrasted brain tissue isolated from the Tg-F344-AD rat model we show the micro CT imaging is capable of precise imaging of Aβ plaques, making possible to further analyze various aspects of their 3D spatial distribution and other properties.

Zobrazit více v PubMed

Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 2002;297(5580):353–356. doi: 10.1126/science.1072994. PubMed DOI

Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease. Front. Neurosci. 2018;12:25. doi: 10.3389/fnins.2018.00025. PubMed DOI PMC

Zempel H, Mandelkow E. Lost after translation: Missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci. 2014;37(12):721–732. doi: 10.1016/j.tins.2014.08.004. PubMed DOI

Hardy JA, Higgins GA. Alzheimer's disease: The amyloid cascade hypothesis. Science. 1992;256(5054):184–186. doi: 10.1126/science.1566067. PubMed DOI

Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegen. 2018;13(1):64. doi: 10.1186/s13024-018-0299-8. PubMed DOI PMC

Astolfo A, Lathuiliere A, Laversenne V, Schneider B, Stampanoni M. Amyloid-β plaque deposition measured using propagation-based X-ray phase contrast CT imaging. J. Synchr. Radiat. 2016;23(3):813–819. doi: 10.1107/S1600577516004045. PubMed DOI PMC

Pinzer BR, et al. Imaging brain amyloid deposition using grating-based differential phase contrast tomography. Neuroimage. 2012;61(4):1336–1346. doi: 10.1016/j.neuroimage.2012.03.029. PubMed DOI

Connor DM, et al. Computed tomography of amyloid plaques in a mouse model of Alzheimer's disease using diffraction enhanced imaging. Neuroimage. 2009;46(4):908–914. doi: 10.1016/j.neuroimage.2009.03.019. PubMed DOI PMC

Massimi L, et al. Exploring Alzheimer's disease mouse brain through X-ray phase contrast tomography: From the cell to the organ. NeuroImage. 2019;184:490–495. doi: 10.1016/j.neuroimage.2018.09.044. PubMed DOI

Noda-Saita K, et al. Quantitative analysis of amyloid plaques in a mouse model of Alzheimer’s disease by phase-contrast X-ray computed tomography. Neuroscience. 2006;138(4):1205–1213. doi: 10.1016/j.neuroscience.2005.12.036. PubMed DOI

Massimi L, et al. Assessment of plaque morphology in Alzheimer’s mouse cerebellum using three-dimensional X-ray phase-based virtual histology. Sci. Rep. 2020;10(1):1–10. doi: 10.1038/s41598-020-68045-8. PubMed DOI PMC

Metscher BD. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev. Dyn. 2009;238(3):632–640. doi: 10.1002/dvdy.21857. PubMed DOI

Metscher BD. MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9(1):11. doi: 10.1186/1472-6793-9-11. PubMed DOI PMC

Li L, et al. Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J. 2017;31(3):1067–1084. doi: 10.1096/fj.201600918R. PubMed DOI PMC

Kaucka M, et al. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife. 2017;6:e25902. doi: 10.7554/eLife.25902. PubMed DOI PMC

Kaucka M, et al. Analysis of neural crest–derived clones reveals novel aspects of facial development. Sci. Adv. 2016;2(8):e1600060. doi: 10.1126/sciadv.1600060. PubMed DOI PMC

Kaucka M, et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Elife. 2018;7:e34465. doi: 10.7554/eLife.34465. PubMed DOI PMC

Celá P, et al. Ciliopathy protein Tmem107 plays multiple roles in craniofacial development. J. Dent. Res. 2018;97(1):108–117. doi: 10.1177/0022034517732538. PubMed DOI PMC

Hampl M, et al. Polarized sonic hedgehog protein localization and a shift in the expression of region-specific molecules is associated with the secondary palate development in the veiled chameleon. Front. Cell Dev. Biol. 2020;8:572. doi: 10.3389/fcell.2020.00572. PubMed DOI PMC

Landova Sulcova M, et al. Developmental mechanisms driving complex tooth shape in reptiles. Dev. Dyn. 2020;249(4):441–464. doi: 10.1002/dvdy.138. PubMed DOI

Kohoutek J, et al. Mouse model of congenital heart defects, dysmorphic facial features and intellectual developmental disorders as a result of nonfunctional CDK13. Front. Cell Dev. Biol. 2019;7:155. doi: 10.3389/fcell.2019.00155. PubMed DOI PMC

Heude E, et al. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. Elife. 2018;7:e40179. doi: 10.7554/eLife.40179. PubMed DOI PMC

Vymazalová K, Vargová L, Zikmund T, Kaiser J. The possibilities of studying human embryos and foetuses using micro-CT: A technical note. Anat. Sci. Int. 2017;92(2):299–303. doi: 10.1007/s12565-016-0377-3. PubMed DOI

Tesařová M, et al. An interactive and intuitive visualisation method for X-ray computed tomography data of biological samples in 3D Portable Document Format. Sci. Rep. 2019;9(1):1–8. doi: 10.1038/s41598-019-51180-2. PubMed DOI PMC

Stolz E, et al. Angioarchitectural changes in subacute cerebral venous thrombosis A synchrotron-based micro-and nano-CT study. Neuroimage. 2011;54(3):1881–1886. doi: 10.1016/j.neuroimage.2010.10.056. PubMed DOI

Heinzer S, et al. Hierarchical microimaging for multiscale analysis of large vascular networks. Neuroimage. 2006;32(2):626–636. doi: 10.1016/j.neuroimage.2006.03.043. PubMed DOI

Ghanavati S, Lisa XY, Lerch JP, Sled JG. A perfusion procedure for imaging of the mouse cerebral vasculature by X-ray micro-CT. J. Neurosci. Methods. 2014;221:70–77. doi: 10.1016/j.jneumeth.2013.09.002. PubMed DOI

Langheinrich AC, et al. Evaluation of the middle cerebral artery occlusion techniques in the rat by in-vitro 3-dimensional micro-and nano computed tomography. BMC Neurol. 2010;10(1):36. doi: 10.1186/1471-2377-10-36. PubMed DOI PMC

Chugh BP, et al. Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography. Neuroimage. 2009;47(4):1312–1318. doi: 10.1016/j.neuroimage.2009.03.083. PubMed DOI

Xie B, Miao P, Sun Y, Wang Y, Yang GY. Micro-computed tomography for hemorrhage disruption of mouse brain vasculature. Transl. Stroke Res. 2012;3(1):174–179. doi: 10.1007/s12975-012-0164-y. PubMed DOI

Dorr A, Sled JG, Kabani N. Three-dimensional cerebral vasculature of the CBA mouse brain: A magnetic resonance imaging and micro computed tomography study. Neuroimage. 2007;35(4):1409–1423. doi: 10.1016/j.neuroimage.2006.12.040. PubMed DOI

Hayasaka N, et al. In vivo diagnostic imaging using micro-CT: sequential and comparative evaluation of rodent models for hepatic/brain ischemia and stroke. PLoS ONE. 2012;7(2):e32342. doi: 10.1371/journal.pone.0032342. PubMed DOI PMC

Dobrivojević M, Bohaček I, Erjavec I, Gorup D, Gajović S. Computed microtomography visualization and quantification of mouse ischemic brain lesion by nonionic radio contrast agents. Croatian Med. J. 2013;54(1):3–11. doi: 10.3325/cmj.2013.54.3. PubMed DOI PMC

Anderson R, Maga AM. A novel procedure for rapid imaging of adult mouse brains with microCT using iodine-based contrast. PLoS ONE. 2015;10(11):e0142974. doi: 10.1371/journal.pone.0142974. PubMed DOI PMC

de Crespigny A, et al. 3D micro-CT imaging of the postmortem brain. J. Neurosci. Methods. 2008;171(2):207–213. doi: 10.1016/j.jneumeth.2008.03.006. PubMed DOI PMC

Saito S, Murase K. Ex vivo imaging of mouse brain using micro-CT with non-ionic iodinated contrast agent: A comparison with myelin staining. Br. J. Radiol. 2012;85(1019):e973–e978. doi: 10.1259/bjr/13040401. PubMed DOI PMC

Bautista NS, et al. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast. Am. Inst. Phys. Conf. Proc. 2014;1(1626):197–200.

Hainfeld JF, et al. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine. 2013;8(10):1601–1609. doi: 10.2217/nnm.12.165. PubMed DOI PMC

Kastriti ME, et al. Ablation of CNTN2+ pyramidal neurons during development results in defects in neocortical size and axonal tract formation. Front. Cell. Neurosci. 2019;13:454. doi: 10.3389/fncel.2019.00454. PubMed DOI PMC

Zikmund T, et al. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography. J. Instrum. 2018;13(02):C02039. doi: 10.1088/1748-0221/13/02/C02039. DOI

Volume Graphics. https://www.volumegraphics.com 2020 (accessed 30 October 2020).

Thermo Fisher Scientific. https://www.fei.com/software/avizo3d/.

Fiji. https://imagej.net/Fiji.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...