High-resolution micro-CT for 3D infarct characterization and segmentation in mice stroke models
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36261475
PubMed Central
PMC9582034
DOI
10.1038/s41598-022-21494-9
PII: 10.1038/s41598-022-21494-9
Knihovny.cz E-zdroje
- MeSH
- cévní mozková příhoda * diagnostické zobrazování patologie MeSH
- infarkt arteria cerebri media diagnostické zobrazování patologie MeSH
- jod * MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- oxid osmičelý MeSH
- rentgenová mikrotomografie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- jod * MeSH
- oxid osmičelý MeSH
Characterization of brain infarct lesions in rodent models of stroke is crucial to assess stroke pathophysiology and therapy outcome. Until recently, the analysis of brain lesions was performed using two techniques: (1) histological methods, such as TTC (Triphenyltetrazolium chloride), a time-consuming and inaccurate process; or (2) MRI imaging, a faster, 3D imaging method, that comes at a high cost. In the last decade, high-resolution micro-CT for 3D sample analysis turned into a simple, fast, and cheaper solution. Here, we successfully describe the application of brain contrasting agents (Osmium tetroxide and inorganic iodine) for high-resolution micro-CT imaging for fine location and quantification of ischemic lesion and edema in mouse preclinical stroke models. We used the intraluminal transient MCAO (Middle Cerebral Artery Occlusion) mouse stroke model to identify and quantify ischemic lesion and edema, and segment core and penumbra regions at different time points after ischemia, by manual and automatic methods. In the transient-ischemic-attack (TIA) mouse model, we can quantify striatal myelinated fibers degeneration. Of note, whole brain 3D reconstructions allow brain atlas co-registration, to identify the affected brain areas, and correlate them with functional impairment. This methodology proves to be a breakthrough in the field, by providing a precise and detailed assessment of stroke outcomes in preclinical animal studies.
I3S Instituto de Investigação e Inovação em Saúde Universidade do Porto Porto Portugal
INEB Instituto de Engenharia Biomédica Porto Portugal
Molecular Neurobiology IBMC Instituto de Biologia Molecular e Celular Porto Portugal
Zobrazit více v PubMed
Balkaya M, Cho S. Optimizing functional outcome endpoints for stroke recovery studies. J. Cereb. Blood Flow Metab. 2019;39:2323–2342. doi: 10.1177/0271678X19875212. PubMed DOI PMC
Murata Y, et al. Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 2008;39:3372–3377. doi: 10.1161/STROKEAHA.108.514026. PubMed DOI PMC
Dirnagl U, Endres M. Found in translation: Preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke. 2014;45:1510–1518. doi: 10.1161/strokeaha.113.004075. PubMed DOI
Snyder, J. M., Hagan, C. E., Bolon, B. & Keene, C. D. in Comparative Anatomy and Histology (Second Edition) (eds Piper M. Treuting, Suzanne M. Dintzis, & Kathleen S. Montine) 403–444 (Academic Press, 2018).
Sommer CJ. Ischemic stroke: Experimental models and reality. Acta Neuropathol. 2017;133:245–261. doi: 10.1007/s00401-017-1667-0. PubMed DOI PMC
Durukan Tolvanen A, Tatlisumak E, Pedrono E, Abo-Ramadan U, Tatlisumak T. TIA model is attainable in Wistar rats by intraluminal occlusion of the MCA for 10min or shorter. Brain Res. 2017;1663:166–173. doi: 10.1016/j.brainres.2017.03.010. PubMed DOI
Pedrono E, et al. An optimized mouse model for transient ischemic attack. J. Neuropathol Exp. Neurol. 2010;69:188–195. doi: 10.1097/NEN.0b013e3181cd331c. PubMed DOI
del Zoppo GJ, Sharp FR, Heiss WD, Albers GW. Heterogeneity in the penumbra. J. Cereb. Blood Flow Metab. 2011;31:1836–1851. doi: 10.1038/jcbfm.2011.93. PubMed DOI PMC
Sharp FR, Lu A, Tang Y, Millhorn DE. Multiple molecular penumbras after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2000;20:1011–1032. doi: 10.1097/00004647-200007000-00001. PubMed DOI
Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12:723–725. doi: 10.1161/01.str.12.6.723. PubMed DOI
Jiang X, et al. A post-stroke therapeutic regimen with omega-3 polyunsaturated fatty acids that promotes white matter integrity and beneficial microglial responses after cerebral ischemia. Transl. Stroke Res. 2016;7:548–561. doi: 10.1007/s12975-016-0502-6. PubMed DOI PMC
Li M, et al. Enhanced white matter reorganization and activated brain glucose metabolism by enriched environment following ischemic stroke: Micro PET/CT and MRI study. Neuropharmacology. 2020;176:108202. doi: 10.1016/j.neuropharm.2020.108202. PubMed DOI
Bazan, N. G., Halabi, A., Ertel, M. & Petasis, N. A. in Basic Neurochemistry 610–620 (2012).
Sommer CJ. Ischemic stroke: Experimental models and reality. Acta Neuropathol. 2017;133:245–261. doi: 10.1007/s00401-017-1667-0. PubMed DOI PMC
Masis J, et al. A micro-CT-based method for characterizing lesions and locating electrodes in small animal brains. J. Vis. Exp. 2018 doi: 10.3791/58585. PubMed DOI
Bernard, R., Balkaya, M. & Rex, A. in Rodent models of stroke neuromethods Ch. Chapter 13, 199–223 (2016).
Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM. High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage. 2008;42:60–69. doi: 10.1016/j.neuroimage.2008.03.037. PubMed DOI
Jeffers MS, et al. Poststroke impairment and recovery are predicted by task-specific regionalization of injury. J. Neurosci. 2020;40:6082–6097. doi: 10.1523/JNEUROSCI.0057-20.2020. PubMed DOI PMC
Boyd LA, et al. Biomarkers of stroke recovery: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int. J. Stroke. 2017;12:480–493. doi: 10.1177/1747493017714176. PubMed DOI PMC
Balkaya M, Kröber JM, Rex A, Endres M. Assessing post-stroke behavior in mouse models of focal ischemia. J. Cereb. Blood Flow Metab. 2013;33:330–338. doi: 10.1038/jcbfm.2012.185. PubMed DOI PMC
Dobrivojevic M, Bohacek I, Erjavec I, Gorup D, Gajovic S. Computed microtomography visualization and quantification of mouse ischemic brain lesion by nonionic radio contrast agents. Croat Med. J. 2013;54:3–11. doi: 10.3325/cmj.2013.54.3. PubMed DOI PMC
Kastner DB, et al. Scalable method for micro-CT analysis enables large scale quantitative characterization of brain lesions and implants. Sci. Rep. 2020;10:20851. doi: 10.1038/s41598-020-77796-3. PubMed DOI PMC
Powers WJ, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/American stroke association. Stroke. 2019;50:e344–e418. doi: 10.1161/STR.0000000000000211. PubMed DOI
Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010;17:197–218. doi: 10.1016/j.pathophys.2009.12.001. PubMed DOI
Saito S, Murase K. Ex vivo imaging of mouse brain using micro-CT with non-ionic iodinated contrast agent: A comparison with myelin staining. Br. J. Radiol. 2012;85:e973–978. doi: 10.1259/bjr/13040401. PubMed DOI PMC
Mizutani R, et al. Three-dimensional X-ray visualization of axonal tracts in mouse brain hemisphere. Sci. Rep. 2016;6:35061. doi: 10.1038/srep35061. PubMed DOI PMC
Parlanti P, et al. Size and specimen-dependent strategy for x-ray micro-ct and tem correlative analysis of nervous system samples. Sci. Rep. 2017;7:2858. doi: 10.1038/s41598-017-02998-1. PubMed DOI PMC
Ding Y, et al. Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography. Elife. 2019;8:e44898. doi: 10.7554/eLife.44898. PubMed DOI PMC
Clark DP, Badea CT. Micro-CT of rodents: State-of-the-art and future perspectives. Phys. Med. 2014;30:619–634. doi: 10.1016/j.ejmp.2014.05.011. PubMed DOI PMC
Ghanavati S, Yu LX, Lerch JP, Sled JG. A perfusion procedure for imaging of the mouse cerebral vasculature by X-ray micro-CT. J. Neurosci. Methods. 2014;221:70–77. doi: 10.1016/j.jneumeth.2013.09.002. PubMed DOI
Dullin C, et al. muCT of ex-vivo stained mouse hearts and embryos enables a precise match between 3D virtual histology, classical histology and immunochemistry. PLoS ONE. 2017;12:e0170597. doi: 10.1371/journal.pone.0170597. PubMed DOI PMC
Hong SH, et al. Development of barium-based low viscosity contrast agents for micro CT vascular casting: Application to 3D visualization of the adult mouse cerebrovasculature. J. Neurosci. Res. 2020;98:312–324. doi: 10.1002/jnr.24539. PubMed DOI PMC
Hlushchuk R, et al. Cutting-edge microangio-CT: new dimensions in vascular imaging and kidney morphometry. Am. J. Physiol. Renal Physiol. 2018;314:F493–F499. doi: 10.1152/ajprenal.00099.2017. PubMed DOI
Schaad L, et al. Correlative imaging of the murine hind limb vasculature and muscle tissue by MicroCT and light microscopy. Sci. Rep. 2017;7:41842. doi: 10.1038/srep41842. PubMed DOI PMC
Quintana DD, et al. The cerebral angiome: High resolution MicroCT imaging of the whole brain cerebrovasculature in female and male mice. Neuroimage. 2019;202:116109. doi: 10.1016/j.neuroimage.2019.116109. PubMed DOI PMC
Udagawa S, Miyara K, Takekata H, Takeuchi Y, Takemura A. Investigation on the validity of 3D micro-CT imaging in the fish brain. J. Neurosci. Methods. 2019;328:108416. doi: 10.1016/j.jneumeth.2019.108416. PubMed DOI
de Crespigny A, et al. 3D micro-CT imaging of the postmortem brain. J. Neurosci. Methods. 2008;171:207–213. doi: 10.1016/j.jneumeth.2008.03.006. PubMed DOI PMC
Zikmund T, et al. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography. J. Instrum. 2018;13:C02039–C02039. doi: 10.1088/1748-0221/13/02/c02039. DOI
Prajapati SI, et al. Erratum to: MicroCT-based virtual histology evaluation of preclinical medulloblastoma. Mol. Imag. Biol. 2017;19:483. doi: 10.1007/s11307-017-1079-5. PubMed DOI
Girard R, et al. Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease. J. Neurosci. Methods. 2016;271:14–24. doi: 10.1016/j.jneumeth.2016.06.021. PubMed DOI PMC
Kavkova M, et al. Contrast enhanced X-ray computed tomography imaging of amyloid plaques in Alzheimer disease rat model on lab based micro CT system. Sci. Rep. 2021;11:5999. doi: 10.1038/s41598-021-84579-x. PubMed DOI PMC
Depannemaecker D, et al. Gold nanoparticles for X-ray microtomography of neurons. ACS Chem. Neurosci. 2019;10:3404–3408. doi: 10.1021/acschemneuro.9b00290. PubMed DOI
Chin A-L, et al. A synchrotron X-ray imaging strategy to map large animal brains. Chin. J. Phys. 2020;65:24–32. doi: 10.1016/j.cjph.2020.01.010. DOI
Luo Y, et al. Non-destructive 3D microtomography of cerebral angioarchitecture changes following ischemic stroke in rats using synchrotron radiation. Front. Neuroanat. 2019 doi: 10.3389/fnana.2019.00005. PubMed DOI PMC
Hayasaka N, et al. In vivo diagnostic imaging using micro-CT: Sequential and comparative evaluation of rodent models for hepatic/brain ischemia and stroke. PLoS ONE. 2012;7:e32342. doi: 10.1371/journal.pone.0032342. PubMed DOI PMC
Park JY, et al. A new micro-computed tomography-based high-resolution blood-brain barrier imaging technique to study ischemic stroke. Stroke. 2014;45:2480–2484. doi: 10.1161/STROKEAHA.114.006297. PubMed DOI
Topperwien M, Doeppner TR, Zechmeister B, Bahr M, Salditt T. Multiscale X-ray phase-contrast tomography in a mouse model of transient focal cerebral ischemia. Biomed. Opt. Express. 2019;10:92–103. doi: 10.1364/BOE.10.000092. PubMed DOI PMC
Toulkeridou, E., Gutierrez, C. E., Baum, D., Doya, K. & Economo, E. P. Automated segmentation of insect anatomy from micro-CT images using deep learning. bioRxiv (2021).
Léger, J., Leyssens, L., De Vleeschouwer, C. & Kerckhofs, G. in Lecture Notes in Computational Vision and Biomechanics 158–170 (Springer International Publishing, 2020).
Rytky SJO, et al. Automated analysis of rabbit knee calcified cartilage morphology using micro-computed tomography and deep learning. J. Anat. 2021;239:251–263. doi: 10.1111/joa.13435. PubMed DOI PMC
Koch S, et al. Atlas registration for edema-corrected MRI lesion volume in mouse stroke models. J. Cereb. Blood Flow Metab. 2019;39:313–323. doi: 10.1177/0271678X17726635. PubMed DOI PMC
Metscher BD. MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11. doi: 10.1186/1472-6793-9-11. PubMed DOI PMC
Bederson JB, et al. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17:1304–1308. doi: 10.1161/01.str.17.6.1304. PubMed DOI
Liszczak TM, et al. Limitations of tetrazolium salts in delineating infarcted brain. Acta Neuropathol. 1984;65:150–157. doi: 10.1007/BF00690469. PubMed DOI
Allen. ALLEN Mouse Brain Atlas. Gene Expression, 1–9 (2007).
Mrzilkova J, et al. Imaging of mouse brain fixated in ethanol in Micro-CT. Biomed. Res. Int. 2019;2019:2054262. doi: 10.1155/2019/2054262. PubMed DOI PMC
Descamps E, et al. Soft tissue discrimination with contrast agents using micro-CT scanning. Belg. J. Zool. 2014;144:20–40.
Rodrigues PV, et al. Illuminating the brain with X-rays: Contributions and future perspectives of high-resolution microtomography to neuroscience. Front. Neurosci. 2021;15:627994. doi: 10.3389/fnins.2021.627994. PubMed DOI PMC
Llambrich S, et al. ViceCT and whiceCT for simultaneous high-resolution visualization of craniofacial, brain and ventricular anatomy from micro-computed tomography. Sci. Rep. 2020;10:18772. doi: 10.1038/s41598-020-75720-3. PubMed DOI PMC
Chen K-C, Arad A, Song Z-M, Croaker D. High-definition neural visualization of rodent brain using micro-CT scanning and non-local-means processing. BMC Med. Imag. 2018;18:38–38. doi: 10.1186/s12880-018-0280-6. PubMed DOI PMC
Anderson R, Maga AM. A novel procedure for rapid imaging of adult mouse brains with MicroCT using iodine-based contrast. PLoS ONE. 2015;10:e0142974. doi: 10.1371/journal.pone.0142974. PubMed DOI PMC
Schoppe O, et al. Deep learning-enabled multi-organ segmentation in whole-body mouse scans. Nat. Commun. 2020;11:5626. doi: 10.1038/s41467-020-19449-7. PubMed DOI PMC
Pinto R, et al. Bridging the Transient Intraluminal Stroke Preclinical Model to Clinical Practice: From Improved Surgical Procedures to a Workflow of Functional Tests. Front Neurol. 2022;13:846735. doi: 10.3389/fneur.2022.846735. PubMed DOI PMC
Koizumi J-I, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema. Nosotchu. 1986;8:1–8. doi: 10.3995/jstroke.8.1. DOI
Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–91. doi: 10.1161/01.STR.20.1.84. PubMed DOI
Chan PH, et al. Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia. NeuroReport. 1993;5:293–296. doi: 10.1097/00001756-199312000-00028. PubMed DOI
Yang G, et al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke. 1994;25:165–170. doi: 10.1161/01.STR.25.1.165. PubMed DOI
Kuts R, et al. A novel method for assessing cerebral edema, infarcted zone and blood-brain barrier breakdown in a single post-stroke rodent brain. Front. Neurosci. 2019;13:1105–1105. doi: 10.3389/fnins.2019.01105. PubMed DOI PMC
Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci.10.1007/978-3-319-24574-4_28 (2015).
Patrice, Y. S., Dave, S. & John, C. P. in Proceedings of the Seventh International Conference on Document Analysis and Recognition, 2, 958 (IEEE Computer Society, 2003).
Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
Li CH, Lee CK. Minimum cross entropy thresholding. Pattern Recogn. 1993;26:617–625. doi: 10.1016/0031-3203(93)90115-D. DOI
Chollet, F. et al.Keras: The Python Deep Learning library. Astrophysics source code library (2018): ascl-1806.
ABADI, Martín, et al. TensorFlow: a system for Large-Scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16). 2016. p. 265–283.
Harris CR, et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC
van der Walt S, et al. scikit-image: Image processing in Python. PeerJ. 2014;2:e453. doi: 10.7717/peerj.453. PubMed DOI PMC
Gomes JR, et al. Cleavage of the vesicular GABA transporter under excitotoxic conditions is followed by accumulation of the truncated transporter in nonsynaptic sites. J. Neurosci. 2011;31:4622–4635. doi: 10.1523/JNEUROSCI.3541-10.2011. PubMed DOI PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Puchades MA, Csucs G, Ledergerber D, Leergaard TB, Bjaalie JG. Spatial registration of serial microscopic brain images to three-dimensional reference atlases with the QuickNII tool. PLoS ONE. 2019;14:e0216796. doi: 10.1371/journal.pone.0216796. PubMed DOI PMC