Imaging of Mouse Brain Fixated in Ethanol in Micro-CT

. 2019 ; 2019 () : 2054262. [epub] 20190714

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31392208

Micro-CT imaging is a well-established morphological method for the visualization of animal models. We used ethanol fixation of the mouse brains to perform high-resolution micro-CT scans showing in great details brain grey and white matters. It was possible to identify more than 50 neuroanatomical structures on the 5 selected coronal sections. Among white matter structures, we identified fornix, medial lemniscus, crossed tectospinal pathway, mammillothalamic tract, and the sensory root of the trigeminal ganglion. Among grey matter structures, we identified basal nuclei, habenular complex, thalamic nuclei, amygdala, subparts of hippocampal formation, superior colliculi, Edinger-Westphal nucleus, and others. We suggest that micro-CT of the mouse brain could be used for neurohistological lesions evaluation as an alternative to classical neurohistology because it does not destroy brain tissue.

Zobrazit více v PubMed

Jud C., Schaff F., Zanette I., Wolf J., Fehringer A., Pfeiffer F. Dentinal tubules revealed with X-ray tensor tomography. Dental Materials. 2016;32(9):1189–1195. doi: 10.1016/j.dental.2016.06.021. PubMed DOI

Naveh G. R., Brumfeld V., Dean M., Shahar R., Weiner S. Direct MicroCT imaging of non-mineralized connective tissues at high resolution. Connective Tissue Research. 2014;55(1):52–60. doi: 10.3109/03008207.2013.867333. PubMed DOI

Zikmund T., Novotná M., Kavková M., et al. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography. Journal of Instrumentation. 2018;13, article C02039:1–12.

Hopkins T. M., Heilman A. M., Liggett J. A., et al. Combining micro-computed tomography with histology to analyze biomedical implants for periphera nerve repair. Journal of Neuroscience Methods. 2015;30(255):122–130. PubMed PMC

Buytaert J., Goyens J., De Greef D., Aerts P., Dirckx J. Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-ct and light sheet fluorescence microscopy (LSFM) Microscopy and Microanalysis. 2014;20(4):1208–1217. doi: 10.1017/S1431927614001329. PubMed DOI

Zhu S., Zhu Q., Liu X., et al. Three-dimensional reconstruction of the microstructure of human acellular nerve allograft. Scientific Reports. 2016;1(6, article 30694) PubMed PMC

Yahyanejad S., Granton P. V., Lieuwes N. G., et al. Complementary use of bioluminescence imaging and contrast-enhanced micro-computed tomography in an orthotopic brain tumor model. Molecular Imaging. 2014;13 PubMed

Fluri F., Schuhmann M. K., Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Design, Development and Therapy. 2015;2(9):3445–3454. PubMed PMC

Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates. 4th. Cambridge, Mass, USA: Academic Press; 2012.

Jacobowitz D. M., Abbot L. C. Chemoarchitectonic Atlas of the Developing Mouse Brain. 1st. Boca Raton, Fla, USA: CRC Press; 1997.

Zheng B., Vazin T., Goodwill P. W., et al. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Scientific Reports. 2015;5, article 14055 PubMed PMC

Takeda T., Thet-Lwin T., Kunii T., et al. Ethanol fixed brain imaging by phase-contrast X-ray technice. Journal of Physics: Conference Series. 2013;425(2, article 022004)

Saito S., Murase K. Ex vivo imaging of mouse brain using micro-CT with non-ionic iodinated contrast agent: a comparison with myelin staining. British Journal of Radiology. 2012;85(1019):e973–e978. doi: 10.1259/bjr/13040401. PubMed DOI PMC

Anderson R., Maga A. M. A novel procedure for rapid imaging of adult mouse brains with microCT using iodine-based contrast. PLoS ONE. 2015;10(11, article e0142974) doi: 10.1371/journal.pone.0142974. PubMed DOI PMC

Aggarwal M., Zhang J., Miller M., Sidman R., Mori S. Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience. 2009;162(4):1339–1350. doi: 10.1016/j.neuroscience.2009.05.070. PubMed DOI PMC

Dong H. W. The Allen Reference Atlas: A Digital Color Brain Atlas of the C57Bl/6J Male Mouse. New Jersey, NJ, USA: John Wiley and Sons Inc; 2008.

Metscher B. D. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology. 2009;9(11) PubMed PMC

Dudak J., Zemlicka J., Karch J., et al. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector. Scientific Reports. 2016;27(6, article 30385) PubMed PMC

Dudak J., Zemlicka J., Krejci F., et al. Evaluation of sample holders designed for long-lasting X-ray micro-tomographic scans of ex-vivo soft tissue samples. Journal of Instrumentation. 2016;11, article C03005

Bruker MicroCT. Volume rendering. 2016, http://bruker-microct.com/products/ctvox.htm.

Dudak J., Zemlicka J., Krejci F., et al. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2015;773:81–86.

Jakubek J., Jakubek M., Platkevic M., et al. Large area pixel detector WIDEPIX with full area sensitivity composed of 100 Timepix assemblies with edgeless sensors. Journal of Instrumentation. 2014;9(4, article C04018)

Hamatsu datasheet. https://www.hamamatsu.com/resources/pdf/etd/L9181-02_TXPR1015E.pdf.

Turecek D., Holy T., Jakubek J., Pospisil S., Vykydal Z. Pixelman: a multi-platform data acquisition and processing software package for Medipix2, Timepix and Medipix3 detectors. Journal of Instrumentation. 2011;6(1) C01046-C01046.

Jakubek J. Data processing and image reconstruction methods for pixel detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007;576(1):223–234. PubMed PMC

Zemlicka J., Dudak J., Karch J., Krejci F. Geometric correction methods for Timepix based large area detectors. Journal of Instrumentation. 2017;12(1) C01021-C01021.

Allen Brain Reference Atlases. Adult mouse. 2004, http://atlas.brain-map.org/

Wang H., Stout D. B., Taschereau R., et al. MARS: A mouse atlas registration system based on a planar x-ray projector and an optical camera. Physics in Medicine and Biology. 2012;57(19):6063–6077. doi: 10.1088/0031-9155/57/19/6063. PubMed DOI PMC

Baiker M., Milles J., Dijkstra J., et al. Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data. Medical Image Analysis. 2010;14(6):723–737. doi: 10.1016/j.media.2010.04.008. PubMed DOI

Ghanavati S., Yu L. X., Lerch J. P., Sled J. G. A perfusion procedure for imaging of the mouse cerebral vasculature by X-ray micro-CT. Journal of Neuroscience Methods. 2014;221:70–77. doi: 10.1016/j.jneumeth.2013.09.002. PubMed DOI

Park J. Y., Lee S. K., Kim J. Y., et al. A new micro-computed tomography-based high-resolution blood-brain barrier imaging technique to study ischemic stroke. Stroke. 2014;45(8):2480–2484. PubMed

Kirschner S., Mürle B., Felix M., et al. Imaging of orthotopic glioblastoma xenografts in mice using a clinical CT scanner: comparison with micro-CT and histology. PLoS ONE. 2016;9(11, article e0165994):p. 11. PubMed PMC

Dorr A., Lerch J., Spring S., Kabani N., Henkelman R. High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. NeuroImage. 2008;42(1):60–69. doi: 10.1016/j.neuroimage.2008.03.037. PubMed DOI

Kovacević N., Henderson J. T., Chan E., et al. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cerebral Cortex. 2005;15(5):639–45. doi: 10.1093/cercor/bhh165. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...