Morphology of the Vasculature and Blood Supply of the Brown Adipose Tissue Examined in an Animal Model by Micro-CT
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32190678
PubMed Central
PMC7064829
DOI
10.1155/2020/7502578
Knihovny.cz E-zdroje
- MeSH
- cévy anatomie a histologie diagnostické zobrazování MeSH
- hnědá tuková tkáň anatomie a histologie krevní zásobení diagnostické zobrazování MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- rentgenová mikrotomografie MeSH
- venuly anatomie a histologie diagnostické zobrazování MeSH
- zobrazování trojrozměrné MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We performed micro-CT imaging of the vascular blood supply in the interscapular area of the brown adipose tissue in three mice with the use of intravascular contrast agent Aurovist™. Resulting 3D data rendering was then adapted into 2D resolution with visualization using false color system and grayscale images. These were then studied for the automatic quantification of the blood vessel density within this area. We found the highest most occurring density within arterioles or venules representing smaller blood vessels whereas with the increase of the vessel diameters a lower percentage rate of their presence was observed in the sample. Our study shows that micro-CT scanning in combination with Aurovist™ contrast is suitable for anatomical studies of interscapular area of brown adipose tissue blood vessel supply.
Centre of Scientific Information 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Anatomy 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Biosciences Vascular and Exercise Biology Unit University of Salzburg Austria
Faculty of Biomedical Engineering Czech Technical University Prague Kladno Czech Republic
Zobrazit více v PubMed
Park A., Kim W. K., Bae K. H. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World Journal of Stem Cells. 2014;6(1):33–42. doi: 10.4252/wjsc.v6.i1.33. PubMed DOI PMC
Honek J., Lim S., Fischer C., Iwamoto H., Seki T., Cao Y. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects. Hormone Molecular Biology and Clinical Investigation. 2014;19(1):5–11. doi: 10.1515/hmbci-2014-0014. PubMed DOI
Hausberger F. X. Über die innervation der fettorgane. Z mikroskop anat Forsch. 1934;36:231–236.
Oelkrug R., Polymeropoulos E. T., Jastroch M. Brown adipose tissue: physiological function and evolutionary significance. Journal of Comparative Physiology. B. 2015;185(6):587–606. doi: 10.1007/s00360-015-0907-7. PubMed DOI
Smith R. E., Roberts J. C. Thermogenesis of brown adipose tissue in cold-acclimated rats. The American Journal of Physiology. 1964;206(1):143–148. doi: 10.1152/ajplegacy.1964.206.1.143. PubMed DOI
Lim S., Honek J., Cao Y. Blood vessels in white and brown adipose tissues. In: Cao Y., editor. Angiogenesis in Adipose Tissue. New York: Springer; 2013.
Xue Y., Xu X. Y., Zhang X. Q., Farokhzad O. C., Langer R. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proceedings of the National Academy of Sciences. 2016;113(20):5552–5557. doi: 10.1073/pnas.1603840113. PubMed DOI PMC
Dudak J., Zemlicka J., Krejci F., et al. X-ray micro-CT scanner for small animal imaging based on timepix detector technology. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2015;773:81–86. doi: 10.1016/j.nima.2014.10.076. DOI
Patzelt M., Mrzilkova J., Dudak J., et al. Ethanol fixation method for heart and lung imaging in micro-CT. Japanese Journal of Radiology. 2019;37(6):500–510. doi: 10.1007/s11604-019-00830-6. PubMed DOI
Mrzilkova J., Patzelt M., Gallina P., et al. Imaging of mouse brain fixated in ethanol in micro-CT. BioMed Research International. 2019;2019:7. doi: 10.1155/2019/2054262. PubMed DOI PMC
Jakubek J. Data processing and image reconstruction methods for pixel detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007;576(1):223–234. doi: 10.1016/j.nima.2007.01.157. PubMed DOI PMC
ORS. Dragonfly software. 3.6 ed. Montreal: Object Research Systems, Inc.; 2018. http://www.theobjects.com/dragonfly.
Bruker. Ctvox: Volume rendering [computer software] 2015.
NRecon User Manual. Skyscan NV; 2011. http://umanitoba.ca/faculties/health_sciences/medicine/units/cacs/sam/media/NReconUserManual.pdf.
Cinti S. The adipose organ. Prostaglandins, Leukotrienes, and Essential Fatty Acids. 2005;73(1):9–15. doi: 10.1016/j.plefa.2005.04.010. PubMed DOI
Branca R. T., McCallister A., Yuan H., et al. Accurate quantification of brown adipose tissue mass by xenon-enhanced computed tomography. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(1):174–179. doi: 10.1073/pnas.1714431115. PubMed DOI PMC
Lunati E., Marzola P., Nicolato E., Fedrigo M., Villa M., Sbarbati A. In vivo quantitative lipidic map of brown adipose tissue by chemical shift imaging at 4.7 tesla. Journal of Lipid Research. 1999;40(8):1395–1400. PubMed
Chen Y. I., Cypess A. M., Sass C. A., et al. Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging. Obesity. 2012;20(7):1519–1526. doi: 10.1038/oby.2012.22. PubMed DOI PMC
Hu H. H., Smith D. L., Jr., Nayak K. S., Goran M. I., Nagy T. R. Identification of brown adipose tissue in mice with fat-water IDEAL-MRI. Journal of Magnetic Resonance Imaging. 2010;31(5):1195–1202. doi: 10.1002/jmri.22162. PubMed DOI PMC
Marzola P., Boschi F., Moneta F., Sbarbati A., Zancanaro C. Preclinical in vivo imaging for fat tissue identification, quantification, and functional characterization. Frontiers in Pharmacology. 2016;7:p. 336. doi: 10.3389/fphar.2016.00336. PubMed DOI PMC
DiFilippo F. P., Patel S., Asosingh K., Erzurum S. C. Small-animal imaging using clinical positron emission tomography/computed tomography and super-resolution. Molecular Imaging. 2012;11(3):210–219. PubMed PMC
Luo X., Jia R., Luo X. Q., et al. Cold exposure differentially stimulates angiogenesis in bat and wat of mice: implication in adrenergic activation. Cellular Physiology and Biochemistry. 2017;42(3):974–986. doi: 10.1159/000478680. PubMed DOI
Blackshear C. P., Borrelli M. R., Shen E. Z., et al. Utilizing confocal microscopy to characterize human and mouse adipose tissue. Tissue Engineering Part C: Methods. 2018;24(10):566–577. doi: 10.1089/ten.tec.2018.0154. PubMed DOI PMC
Cao Y., Wang H., Wang Q., Han X., Zeng W. Three-dimensional volume fluorescence-imaging of vascular plasticity in adipose tissues. Molecular Metabolism. 2018;14:71–81. doi: 10.1016/j.molmet.2018.06.004. PubMed DOI PMC