High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector

. 2016 Jul 27 ; 6 () : 30385. [epub] 20160727

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27461900

Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation.

Zobrazit více v PubMed

Suvarna S. K., Layton C. & Bancroft J. D. Bancroft’s Theory and Practice of Histological Techniques, 7th Edition. Churchill Livingstone Elsevier, Oxford (2013).

Geyer S. H., Mohun T. J. & Weninger J. W. Visualizing Vertebrae Embryos with Episcopic 3D Imaging Techniques. ScientificWorldJournal 16, 1423–1437, doi: 10.1038/nphys265 (2009). PubMed DOI PMC

Mohun J. T. & Weninger W. J. Imaging heart development using high-resolution episcopic microscopy. Curr. Opin. Genetics. Dev. 21, 573–578, doi: 10.1016/j.gde.2011.07.004 (2011). PubMed DOI PMC

Gerneke D. A. et al. Surface imaging microscopy using an ultramiller for large volume 3D reconstruction of wax- and resin-embedded tissues. Microsc. Res. Tech. 70, 886–894, doi: 10.1002/jemt.20491 (2007). PubMed DOI

Rosenthal J. et al. Rapid High Resolution Three Dimensional Reconstruction of Embryos with Episcopic Fluorescence Image Capture. Birth Defects Res. C Embryo Today 72, 213–223, doi: 10.1002/bdrc.20023 (2004). PubMed DOI

Withers P. J. X-ray nanotomography. Mater. Today 10, 26–34, doi: 0.1016/S1369-7021(07)70305-X (2007).

Landis E. N. & Keane D. T. X-ray microtomography. Mater. Charact. 61, 1305–1316, doi: 10.1016/j.matchar.2010.09.012 (2010). DOI

Silva J. M. S. et al. Three-dimensional non-destructive soft-tissue visualization with X-ray staining micro-tomography. Sci. Rep. 5, 14088, doi: 10.1038/srep14088 (2015). PubMed DOI PMC

Metschner B. D. MicroCT for Developmental Biology: A Versatile Tool for High-Contrast 3D Imaging at Histological Resolutions. Dev. Dyn. 238, 632–640, doi: 10.1002/dvdy.21857 (2009). PubMed DOI

Sharir A., Ramniceanu G. & Brumfeld V. High Resolution 3D Imaging of Ex-Vivo Biological Samples by Micro CT. J. Vis. Exp. 52, 2699, doi: 10.3791/2688 (2011). PubMed DOI PMC

Jeffery N. S., Stephenson R. S., Gallagher J. A. & Cox P. G. Micro-computed tomography with iodine staining resolves the arrangement of muscle fibres. J. Biomech. 44, 189–192, doi: 10.1016/j.jbiomech.2010.08.027 (2011). PubMed DOI

Johnson J. T. et al. Virtual Histology of Transgenic Mouse Embryos for High-Throughput Phenotyping. PLoS Genet. 2, e61, doi: 10.1371/journal.pgen.0020061 (2006). PubMed DOI PMC

Li X., Anton N., Zuber G. & Vandamme T. Contrast agents for preclinical targeted X-ray imaging. Adv. Drug Deliv. 76, 116–133, 10.1016/j.addr.2014.07.013 (2014). PubMed DOI

Mizutani R. & Suzuki Y. X-ray microtomography in biology. Micron 43, 104–115, doi: 10.1016/j.micron.2011.10.002 (2012). PubMed DOI

Pai V. M. et al. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT). J. Anat. 220, 514–524, doi: 10.1111/j.1469-7580.2012.01483.x (2012). PubMed DOI PMC

Llopart X., Ballabriga R., Campbell M., Tlustos L. & Wong W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instr. Meth. A 581, 485–484, doi: 0.1016/j.nima.2007.08.079 (2007).

Henrich B. et al. PILATUS: A single photon counting pixel detector for X-ray applications. Nucl. Instr. Meth. A 607, 247–249, doi: 10.1016/j.nima.2009.03.200 (2009). DOI

Dinapoli R. et al. EIGER: Next generation single photon counting detector for X-ray applications. Nucl. Instr. Meth. A 650, 79–83, doi: 10.1016/j.nima.2010.12.005 (2011). DOI

Berar J. F. et al. XPAD3 hybrid pixel detector application. Nucl. Instr. Meth. A 607, 23–235, doi: 10.1016/j.nima.2009.03.208 (2009). DOI

Bellazzini R. et al. Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC. J. Instrum. 8, C02028, doi: 10.1088/1748-0221/8/02/C022028 (2013). DOI

Jakubek J. Data processing and image reconstruction methods for pixel detectors. Nucl. Instr. Meth. A 576, 223–234, doi: 10.1016/j.nima.2007.01.157 (2007). DOI

Jakubek J. et al. Large area pixel detector WidePIX with full area sensitivity composed of 100 Timepix assemblies with edgeless sensors. J. Instrum. 9, C04018, doi: 10.1088/1748-0221/9/04/C04018 (2014). DOI

Shirai R. et al. Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography. J. Synchrotron Radiat. 21, 795–800, doi: 0.1107/S1600577514010558 (2014). PubMed

Takeda T. et al. Ethanol fixed brain imaging by phase-contrast X-ray technique. J. Phys. Conf. Ser. 425, 022004, doi: 10.1088/1742-6596/425/2/022004 (2013). DOI

Momose A., Takeda T., Itai Y. & Hirano K. Phase-contrast x-ray computed tomography for observing biological soft tissues. Nat. Med. 2, 473–475, doi: 10.1038/nm0496-473 (1996). PubMed DOI

Pfeiffer F., Weitkamp T., Bunk O. & David C. Phase retrieval and differential phase-contrast imaging with lowbrilliance x-ray sources. Nat. Phys. 2, 258–261, doi: 10.1038/nphys265 (2006). DOI

Schulz G. et al. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology. Sci. Rep. 2, 826, doi: 10.1038/srep00826 (2012). PubMed DOI PMC

Hagen C. K. et al. High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography. Sci. Rep. 5, 18156, doi: 10.1038/srep18156 (2015). PubMed DOI PMC

Schleede S. et al. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source. Proc. Natl. Acad. Sci. USA 44, 17880–17882, doi: 10.1073/pnas.1206684109 (2012). PubMed DOI PMC

Bech M. et al. In-vivo dark-field and phase-contrast x-ray imaging. Sci. Rep. 3, 3209, doi: 10.1038/srep03209 (2013). PubMed DOI PMC

Lai B. et al. Development of a hard x‐ray imaging microscope. Rev. Sci. Instrum. 66, 2287–2289, doi: 10.1063/1.1145666 (1995). DOI

Wilhein T. et al. Differential interference contrast x-ray microscopy with submicron resolution. Appl. Phys. Lett. 78, 2082–2084, doi: 10.1063/1.1360776 (2001). DOI

Dudak J. et al. Evaluation of sample holders designed for long-lasting X-ray micro-tomographic scans of ex-vivo soft tissue samples. J. Instrum. 11, C03005, doi: 10.1088/1748-0221/11/03/C03005 (2016). DOI

Dudak J. et al. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology. Nucl. Instr. Meth. A 773, 81–86, doi: 10.1016/j.nima.2014.10.076 (2015). DOI

Jakubek J., Holy T., Jakubek M., Vavrik D. & Vykydal Z. Experimental system for high resolution X-ray transmission radiography. Nucl. Instr. Meth. A 563, 278–281, doi: 10.1016/j.nima.2006.01.033 (2006). DOI

Vavrik D. & Jakubek J. Radiogram enhancement and linearization using the beam hardening correction method. Nucl. Instr. Meth. A 607, 212–214, doi: 10.1016/j.nima.2009.03.156 (2009). DOI

Münch B., Trtik P., Marone F. & Stampanoni M. Stripe and ring artefact removal with combined wavelet-Fourier filtering. Opt. Express 17, 8567–8591 (2009). PubMed

Loening A. M. & Gambhir S. S. AMIDE: a free software tool for multimodality medical image analysis. Mol. Imaging 2, 131–137, doi: 10.1162/153535003322556877 (2003). PubMed DOI

Bruker MicroCT. Volume rendering. (2016) Available at: http://bruker-microct.com/products/ctvox.htm (Accessed: 14th March 2016).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Imaging of Mouse Brain Fixated in Ethanol in Micro-CT

. 2019 ; 2019 () : 2054262. [epub] 20190714

Ethanol fixation method for heart and lung imaging in micro-CT

. 2019 Jun ; 37 (6) : 500-510. [epub] 20190314

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...