Early Spatial Memory Impairment in a Double Transgenic Model of Alzheimer's Disease TgF-344 AD

. 2021 Sep 30 ; 11 (10) : . [epub] 20210930

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34679365

Before the course of Alzheimer's disease fully manifests itself and largely impairs a patient's cognitive abilities, its progression has already lasted for a considerable time without being noticed. In this project, we mapped the development of spatial orientation impairment in an active place avoidance task-a highly sensitive test for mild hippocampal damage. We tested vision, anxiety and spatial orientation performance at four age levels of 4, 6, 9, and 12 months across male and female TgF-344 AD rats carrying human genes for presenilin-1 and amyloid precursor protein. We found a progressive deterioration of spatial navigation in transgenic animals, beginning already at the age of 4 months, that fully developed at 6 months of age across both male and female groups, compared to their age-matched controls. In addition, we described the gradual vision impairment that was accentuated in females at the age of 12 months. These results indicate a rather early onset of cognitive impairment in the TgF-344 AD Alzheimer's disease model, starting earlier than shown to date, and preceding the reported development of amyloid plaques.

Zobrazit více v PubMed

Querfurth H.W., LaFerla F.M. Alzheimer’s Disease. N. Engl. J. Med. 2010;362:329–344. doi: 10.1056/NEJMra0909142. PubMed DOI

Selkoe D.J. Alzheimer’s Disease: Genes, Proteins, and Therapy. Physiol. Rev. 2001;81:741–766. doi: 10.1152/physrev.2001.81.2.741. PubMed DOI

Braak H., Braak E. Neuropathological Stageing of Alzheimer-Related Changes. Acta Neuropathol. 1991;82:239–259. doi: 10.1007/BF00308809. PubMed DOI

Chambers J.K., Tokuda T., Uchida K., Ishii R., Tatebe H., Takahashi E., Tomiyama T., Une Y., Nakayama H. The Domestic Cat as a Natural Animal Model of Alzheimer’s Disease. Acta Neuropathol. Commun. 2015;3:78. doi: 10.1186/s40478-015-0258-3. PubMed DOI PMC

DeTure M.A., Dickson D.W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener. 2019;14:32. doi: 10.1186/s13024-019-0333-5. PubMed DOI PMC

Myers A., McGonigle P. Overview of Transgenic Mouse Models for Alzheimer’s Disease. Curr. Protoc. Neurosci. 2019;89:e81. doi: 10.1002/cpns.81. PubMed DOI

Price D.L., Sisodia S.S. Mutant Genes in Familial Alzheimer’s Disease and Transgenic Models. Annu. Rev. Neurosci. 1998;21:479–505. doi: 10.1146/annurev.neuro.21.1.479. PubMed DOI

Flood D.G., Lin Y.-G., Lang D.M., Trusko S.P., Hirsch J.D., Savage M.J., Scott R.W., Howland D.S. A Transgenic Rat Model of Alzheimer’s Disease with Extracellular Abeta Deposition. Neurobiol. Aging. 2009;30:1078–1090. doi: 10.1016/j.neurobiolaging.2007.10.006. PubMed DOI

Leon W.C., Canneva F., Partridge V., Allard S., Ferretti M.T., DeWilde A., Vercauteren F., Atifeh R., Ducatenzeiler A., Klein W., et al. A Novel Transgenic Rat Model with a Full Alzheimer’s-like Amyloid Pathology Displays Pre-Plaque Intracellular Amyloid-Beta-Associated Cognitive Impairment. J. Alzheimers Dis. 2010;20:113–126. doi: 10.3233/JAD-2010-1349. PubMed DOI

Yang S. Patterns of Insertions and Their Covariation with Substitutions in the Rat, Mouse, and Human Genomes. Genome Res. 2004;14:517–527. doi: 10.1101/gr.1984404. PubMed DOI PMC

Cohen R.M., Rezai-Zadeh K., Weitz T.M., Rentsendorj A., Gate D., Spivak I., Bholat Y., Vasilevko V., Glabe C.G., Breunig J.J., et al. A Transgenic Alzheimer Rat with Plaques, Tau Pathology, Behavioral Impairment, Oligomeric Aβ, and Frank Neuronal Loss. J. Neurosci. Off. J. Soc. Neurosci. 2013;33:6245–6256. doi: 10.1523/JNEUROSCI.3672-12.2013. PubMed DOI PMC

Kavkova M., Zikmund T., Kala A., Salplachta J., Proskauer Pena S.L., Kaiser J., Jezek K. Contrast Enhanced X-Ray Computed Tomography Imaging of Amyloid Plaques in Alzheimer Disease Rat Model on Lab Based Micro CT System. Sci. Rep. 2021;11:5999. doi: 10.1038/s41598-021-84579-x. PubMed DOI PMC

Pentkowski N.S., Berkowitz L.E., Thompson S.M., Drake E.N., Olguin C.R., Clark B.J. Anxiety-like Behavior as an Early Endophenotype in the TgF344-AD Rat Model of Alzheimer’s Disease. Neurobiol. Aging. 2018;61:169–176. doi: 10.1016/j.neurobiolaging.2017.09.024. PubMed DOI PMC

Saré R.M., Cooke S.K., Krych L., Zerfas P.M., Cohen R.M., Smith C.B. Behavioral Phenotype in the TgF344-AD Rat Model of Alzheimer’s Disease. Front. Neurosci. 2020;14:601. doi: 10.3389/fnins.2020.00601. PubMed DOI PMC

Allison S.L., Fagan A.M., Morris J.C., Head D. Spatial Navigation in Preclinical Alzheimer’s Disease. J. Alzheimers Dis. 2016;52:77–90. doi: 10.3233/JAD-150855. PubMed DOI PMC

Coughlan G., Laczó J., Hort J., Minihane A.-M., Hornberger M. Spatial Navigation Deficits—Overlooked Cognitive Marker for Preclinical Alzheimer Disease? Nat. Rev. Neurol. 2018;14:496–506. doi: 10.1038/s41582-018-0031-x. PubMed DOI

Hort J., Laczo J., Vyhnalek M., Bojar M., Bures J., Vlcek K. Spatial Navigation Deficit in Amnestic Mild Cognitive Impairment. Proc. Natl. Acad. Sci. USA. 2007;104:4042–4047. doi: 10.1073/pnas.0611314104. PubMed DOI PMC

Serino S., Morganti F., Di Stefano F., Riva G. Detecting Early Egocentric and Allocentric Impairments Deficits in Alzheimer’s Disease: An Experimental Study with Virtual Reality. Front. Aging Neurosci. 2015;7:88. doi: 10.3389/fnagi.2015.00088. PubMed DOI PMC

Eichenbaum H. The Role of the Hippocampus in Navigation Is Memory. J. Neurophysiol. 2017;117:1785–1796. doi: 10.1152/jn.00005.2017. PubMed DOI PMC

Morris R.G.M., Garrud P., Rawlins J.N.P., O’Keefe J. Place Navigation Impaired in Rats with Hippocampal Lesions. Nature. 1982;297:681–683. doi: 10.1038/297681a0. PubMed DOI

O’Keefe J., Nadel L. The Hippocampus as a Cognitive Map. Oxford University Press; Oxford, NY, USA: 1978.

Fox N.C., Warrington E.K., Freeborough P.A., Hartikainen P., Kennedy A.M., Stevens J.M., Rossor M.N. Presymptomatic Hippocampal Atrophy in Alzheimer’s Disease: A Longitudinal MRI Study. Brain. 1996;119:2001–2007. doi: 10.1093/brain/119.6.2001. PubMed DOI

Hyman B., Van Hoesen G., Damasio A., Barnes C. Alzheimer’s Disease: Cell-Specific Pathology Isolates the Hippocampal Formation. Science. 1984;225:1168–1170. doi: 10.1126/science.6474172. PubMed DOI

Stoiljkovic M., Kelley C., Stutz B., Horvath T.L., Hajós M. Altered Cortical and Hippocampal Excitability in TgF344-AD Rats Modeling Alzheimer’s Disease Pathology. Cereb. Cortex. 2019;29:2716–2727. doi: 10.1093/cercor/bhy140. PubMed DOI PMC

Berkowitz L.E., Harvey R.E., Drake E., Thompson S.M., Clark B.J. Progressive Impairment of Directional and Spatially Precise Trajectories by TgF344-AD Rats in the Morris Water Task. BioRxiv. 2018;8:282392. PubMed PMC

Smith L.A., McMahon L.L. Deficits in Synaptic Function Occur at Medial Perforant Path-Dentate Granule Cell Synapses Prior to Schaffer Collateral-CA1 Pyramidal Cell Synapses in the Novel TgF344-Alzheimer’s Disease Rat Model. Neurobiol. Dis. 2018;110:166–179. doi: 10.1016/j.nbd.2017.11.014. PubMed DOI PMC

Colgin L.L., Denninger T., Fyhn M., Hafting T., Bonnevie T., Jensen O., Moser M.-B., Moser E.I. Frequency of Gamma Oscillations Routes Flow of Information in the Hippocampus. Nature. 2009;462:353–357. doi: 10.1038/nature08573. PubMed DOI

Jezek K., Henriksen E.J., Treves A., Moser E.I., Moser M.-B. Theta-Paced Flickering between Place-Cell Maps in the Hippocampus. Nature. 2011;478:246–249. doi: 10.1038/nature10439. PubMed DOI

Zitricky F., Jezek K. Retrieval of Spatial Representation on Network Level in Hippocampal CA3 Accompanied by Overexpression and Mixture of Stored Network Patterns. Sci. Rep. 2019;9:11512. doi: 10.1038/s41598-019-47842-w. PubMed DOI PMC

Cimadevilla J.M., Wesierska M., Fenton A.A., Bures J. Inactivating One Hippocampus Impairs Avoidance of a Stable Room-Defined Place during Dissociation of Arena Cues from Room Cues by Rotation of the Arena. Proc. Natl. Acad. Sci. USA. 2001;98:3531–3536. doi: 10.1073/pnas.051628398. PubMed DOI PMC

Stuchlík A., Petrásek T., Prokopová I., Holubová K., Hatalová H., Valeš K., Kubík S., Dockery C., Wesierska M. Place Avoidance Tasks as Tools in the Behavioral Neuroscience of Learning and Memory. Physiol. Res. 2013;62:S1–S19. doi: 10.33549/physiolres.932635. PubMed DOI

Wesierska M., Dockery C., Fenton A.A. Beyond Memory, Navigation, and Inhibition: Behavioral Evidence for Hippocampus-Dependent Cognitive Coordination in the Rat. J. Neurosci. 2005;25:2413–2419. doi: 10.1523/JNEUROSCI.3962-04.2005. PubMed DOI PMC

Muñoz-Moreno E., Tudela R., López-Gil X., Soria G. Early Brain Connectivity Alterations and Cognitive Impairment in a Rat Model of Alzheimer’s Disease. Alzheimers Res. Ther. 2018;10:16. doi: 10.1186/s13195-018-0346-2. PubMed DOI PMC

Lester A.W., Moffat S.D., Wiener J.M., Barnes C.A., Wolbers T. The Aging Navigational System. Neuron. 2017;95:1019–1035. doi: 10.1016/j.neuron.2017.06.037. PubMed DOI PMC

Tsai Y., Lu B., Ljubimov A.V., Girman S., Ross-Cisneros F.N., Sadun A.A., Svendsen C.N., Cohen R.M., Wang S. Ocular Changes in TgF344-AD Rat Model of Alzheimer’s Disease. Investig. Ophthalmol. Vis. Sci. 2014;55:523–534. doi: 10.1167/iovs.13-12888. PubMed DOI PMC

Donovan N.J., Locascio J.J., Marshall G.A., Gatchel J., Hanseeuw B.J., Rentz D.M., Johnson K.A., Sperling R.A. Harvard Aging Brain Study Longitudinal Association of Amyloid Beta and Anxious-Depressive Symptoms in Cognitively Normal Older Adults. Am. J. Psychiatry. 2018;175:530–537. doi: 10.1176/appi.ajp.2017.17040442. PubMed DOI PMC

Lyketsos C.G., Carrillo M.C., Ryan J.M., Khachaturian A.S., Trzepacz P., Amatniek J., Cedarbaum J., Brashear R., Miller D.S. Neuropsychiatric Symptoms in Alzheimer’s Disease. Alzheimers Dement. 2011;7:532–539. doi: 10.1016/j.jalz.2011.05.2410. PubMed DOI PMC

Kromer Vogt L.J., Hyman B.T., Van Hoesen G.W., Damasio A.R. Pathological Alterations in the Amygdala in Alzheimer’s Disease. Neuroscience. 1990;37:377–385. doi: 10.1016/0306-4522(90)90408-V. PubMed DOI

España J., Giménez-Llort L., Valero J., Miñano A., Rábano A., Rodriguez-Alvarez J., LaFerla F.M., Saura C.A. Intraneuronal Beta-Amyloid Accumulation in the Amygdala Enhances Fear and Anxiety in Alzheimer’s Disease Transgenic Mice. Biol. Psychiatry. 2010;67:513–521. doi: 10.1016/j.biopsych.2009.06.015. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...