Retrieval of spatial representation on network level in hippocampal CA3 accompanied by overexpression and mixture of stored network patterns
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31395903
PubMed Central
PMC6687893
DOI
10.1038/s41598-019-47842-w
PII: 10.1038/s41598-019-47842-w
Knihovny.cz E-zdroje
- MeSH
- akční potenciály fyziologie MeSH
- hipokampální oblast CA3 patofyziologie MeSH
- modely neurologické * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Retrieval of stored network activity pattern has been shown as a competitive transition from one attractor state to another, orchestrated by local theta oscillation. However, the fine nature of this process that is considered as substrate of memory recall is not clear. We found that hippocampal network recall is characterized by hyperactivity in the CA3 place cell population, associated with an "overexpression" of the retrieved network pattern. The overexpression was based on recruitment of cells from the same (recalled) spatial representation with low expected firing probability at the given position. We propose that increased place cell activation during state transitions might facilitate pattern completion towards the retrieved network state and stabilize its expression in the network. Furthermore, we observed frequent mixing of both activity patterns at the temporal level of a single theta cycle. On a sub-theta cycle scale, we found signs of segregation that might correspond to a gamma oscillation patterning, as well as occasional mixing at intervals of less than 5 milliseconds. Such short timescale coactivity might induce plasticity mechanisms, leading to associations across the two originally decorrelated network activity states.
Zobrazit více v PubMed
Alme CB, et al. Place cells in the hippocampus: eleven maps for eleven rooms. Proc Natl Acad Sci USA. 2014;111:18428–18435. doi: 10.1073/pnas.1421056111. PubMed DOI PMC
Takeuchi T, Duszkiewicz AJ, Morris RG. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130288. doi: 10.1098/rstb.2013.0288. PubMed DOI PMC
Nabavi S, et al. Engineering a memory with LTD and LTP. Nature. 2014;511:348–352. doi: 10.1038/nature13294. PubMed DOI PMC
Pastalkova E, et al. Storage of spatial information by the maintenance mechanism of LTP. Science. 2006;313:1141–1144. doi: 10.1126/science.1128657. PubMed DOI
Treves A, Rolls ET. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus. 1992;2:189–199. doi: 10.1002/hipo.450020209. PubMed DOI
Rolls ET. A theory of hippocampal function in memory. Hippocampus. 1996;6:601–620. doi: 10.1002/(SICI)1098-1063(1996)6:6<601::AID-HIPO5>3.0.CO;2-J. PubMed DOI
Battaglia FP, Treves A. Stable and rapid recurrent processing in realistic autoassociative memories. Neural Comput. 1998;10:431–450. doi: 10.1162/089976698300017827. PubMed DOI
de Almeida L, Idiart M, Lisman J. E. memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations. Learn Mem. 2007;14:795–806. doi: 10.1101/lm.730207. PubMed DOI PMC
McNaughton BL, Morris RG. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in neurosciences. 1987;10:408–415. doi: 10.1016/0166-2236(87)90011-7. DOI
Guzman SJ, Schlogl A, Frotscher M, Jonas P. Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science. 2016;353:1117–1123. doi: 10.1126/science.aaf1836. PubMed DOI
Wills TJ, Lever C, Cacucci F, Burgess N, O’Keefe J. Attractor dynamics in the hippocampal representation of the local environment. Science. 2005;308:873–876. doi: 10.1126/science.1108905. PubMed DOI PMC
Lee I, Yoganarasimha D, Rao G, Knierim JJ. Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature. 2004;430:456–459. doi: 10.1038/nature02739. PubMed DOI
Stella F, Treves A. Associative memory storage and retrieval: involvement of theta oscillations in hippocampal information processing. Neural Plast. 2011;2011:683961. doi: 10.1155/2011/683961. PubMed DOI PMC
Leutgeb JK, et al. Progressive transformation of hippocampal neuronal representations in ‘morphed’ environments. Neuron. 2005;48:345–358. doi: 10.1016/j.neuron.2005.09.007. PubMed DOI
Colgin LL, et al. Attractor-map versus autoassociation based attractor dynamics in the hippocampal network. J. Neurophysiol. 2010;104:35–50. doi: 10.1152/jn.00202.2010. PubMed DOI PMC
Solstad T, Yousif HN, Sejnowski TJ. Place cell rate remapping by CA3 recurrent collaterals. PLoS Comput Biol. 2014;10:e1003648. doi: 10.1371/journal.pcbi.1003648. PubMed DOI PMC
Mark S, Romani S, Jezek K, Tsodyks M. Theta-paced flickering between place-cell maps in the hippocampus: A model based on short-term synaptic plasticity. Hippocampus. 2017;27:959–970. doi: 10.1002/hipo.22743. PubMed DOI PMC
Jezek K, Henriksen EJ, Treves A, Moser EI, Moser MB. Theta-paced flickering between place-cell maps in the hippocampus. Nature. 2011;478:246–249. doi: 10.1038/nature10439. PubMed DOI
Posani L, Cocco S, Monasson R. Integration and multiplexing of positional and contextual information by the hippocampal network. PLoS Comput Biol. 2018;14:e1006320. doi: 10.1371/journal.pcbi.1006320. PubMed DOI PMC
McNaughton BL, Barnes CA, O’Keefe J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res. 1983;52:41–49. doi: 10.1007/BF00237147. PubMed DOI
Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 2007;27:12176–12189. doi: 10.1523/JNEUROSCI.3761-07.2007. PubMed DOI PMC
Kelemen E, Fenton AA. Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol. 2010;8:e1000403. doi: 10.1371/journal.pbio.1000403. PubMed DOI PMC
Pfeiffer BE, Foster DJ. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science. 2015;349:180–183. doi: 10.1126/science.aaa9633. PubMed DOI
Madison DV, Nicoll RA. Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol. 1984;354:319–331. doi: 10.1113/jphysiol.1984.sp015378. PubMed DOI PMC
Fyhn M, Hafting T, Treves A, Moser MB, Moser EI. Hippocampal remapping and grid realignment in entorhinal cortex. Nature. 2007;446:190–194. doi: 10.1038/nature05601. PubMed DOI
Hales JB, et al. Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. Cell Rep. 2014;9:893–901. doi: 10.1016/j.celrep.2014.10.009. PubMed DOI PMC
Gothard KM, Skaggs WE, McNaughton BL. Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J Neurosci. 1996;16:8027–8040. doi: 10.1523/JNEUROSCI.16-24-08027.1996. PubMed DOI PMC
Bonnevie T, et al. Grid cells require excitatory drive from the hippocampus. Nat Neurosci. 2013;16:309–317. doi: 10.1038/nn.3311. PubMed DOI
Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–225. doi: 10.1146/annurev-neuro-062111-150444. PubMed DOI PMC
Impaired Dynamics of Positional and Contextual Neural Coding in an Alzheimer's Disease Rat Model
Context-independent expression of spatial code in hippocampus
Early Spatial Memory Impairment in a Double Transgenic Model of Alzheimer's Disease TgF-344 AD