Context-independent expression of spatial code in hippocampus
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36456668
PubMed Central
PMC9715626
DOI
10.1038/s41598-022-25006-7
PII: 10.1038/s41598-022-25006-7
Knihovny.cz E-zdroje
- MeSH
- epizodická paměť * MeSH
- hipokampus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- plži * MeSH
- podněty MeSH
- prostorová paměť MeSH
- rozpomínání MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The hippocampus plays a crucial role in the formation and retrieval of spatial memory across mammals and episodic memory in humans. Episodic and spatial memories can be retrieved irrespective of the subject's awake behavioral state and independently of its actual spatial context. However, the nature of hippocampal network activity during such out-context retrieval has not been described so far. Theoretically, context-independent spatial memory retrieval suggests a shift of the hippocampal spatial representations from coding the current spatial context to coding the remembered environment. In this study we show in rats that the CA3 neuronal population can switch spontaneously across representations and transiently activate another stored familiar spatial pattern without direct external sensory cuing. This phenomenon qualitatively differs from the well-described sharp wave-related pattern reactivations during immobility. Here, it occurs under the theta oscillatory state during active exploration and reflects the preceding experience of sudden environmental change. The respective out-context coding spikes appeared later in the theta cycle than the in-context ones. Finally, the experience also induced the emergence of population vectors with a co-expression of both codes segregated into different phases of the theta cycle.
Zobrazit více v PubMed
Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. 1957. J. Neuropsychiatry Clin. Neurosci. 2000;12:103–113. doi: 10.1176/jnp.12.1.103-a. PubMed DOI
Morris RGM, Garrud P, Rawlins JNP, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–683. doi: 10.1038/297681a0. PubMed DOI
O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–175. doi: 10.1016/0006-8993(71)90358-1. PubMed DOI
Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–1194. doi: 10.1016/S0896-6273(02)01096-6. PubMed DOI
Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265:676–679. doi: 10.1126/science.8036517. PubMed DOI
Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001;29:145–156. doi: 10.1016/S0896-6273(01)00186-6. PubMed DOI
Karlsson MP, Frank LM. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 2009;12:913–918. doi: 10.1038/nn.2344. PubMed DOI PMC
Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31:551–570. doi: 10.1016/0306-4522(89)90423-5. PubMed DOI
Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 2009;12:1222–1223. doi: 10.1038/nn.2384. PubMed DOI
Ego-Stengel V, Wilson MA. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus. 2010;20:1–10. PubMed PMC
Yu JY, Frank LM. Prefrontal cortical activity predicts the occurrence of nonlocal hippocampal representations during spatial navigation. PLoS Biol. 2021;19:e3001393. doi: 10.1371/journal.pbio.3001393. PubMed DOI PMC
Kay K, et al. Constant sub-second cycling between representations of possible futures in the hippocampus. Cell. 2020;180:552–567. doi: 10.1016/j.cell.2020.01.014. PubMed DOI PMC
Jezek K, Henriksen EJ, Treves A, Moser EI, Moser M-B. Theta-paced flickering between place-cell maps in the hippocampus. Nature. 2011;478:246–249. doi: 10.1038/nature10439. PubMed DOI
Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 2007;27:12176–12189. doi: 10.1523/JNEUROSCI.3761-07.2007. PubMed DOI PMC
Zitricky F, Jezek K. Retrieval of spatial representation on network level in hippocampal CA3 accompanied by overexpression and mixture of stored network patterns. Sci. Rep. 2019;9:11512. doi: 10.1038/s41598-019-47842-w. PubMed DOI PMC
Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br. J. Pharmacol. 2010;160:1577–1579. doi: 10.1111/j.1476-5381.2010.00872.x. PubMed DOI PMC
Bolker, B. M. GLMM FAQ. http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html (2020).
Davidson TJ, Kloosterman F, Wilson MA. Hippocampal replay of extended experience. Neuron. 2009;63:497–507. doi: 10.1016/j.neuron.2009.07.027. PubMed DOI PMC
R Core Team. R: a language and environment for statistical computing. (2020).
Bolker BM, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 2009;24:127–135. doi: 10.1016/j.tree.2008.10.008. PubMed DOI
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team Linear and nonlinear mixed effects models. R Package Version. 2007;3(57):1–89.
Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models: Estimation of Semiparametric Generalized Linear Models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011;73:3–36. doi: 10.1111/j.1467-9868.2010.00749.x. DOI
DiCiccio TJ, Efron B. Bootstrap confidence intervals. Statist. Sci. 1996 doi: 10.1214/ss/1032280214. DOI
Cheng G, Yu Z, Huang JZ. The cluster bootstrap consistency in generalized estimating equations. J. Multivar. Anal. 2013;115:33–47. doi: 10.1016/j.jmva.2012.09.003. DOI
Burnham KP, Anderson DR. Model Selection and Inference. New York, NY: Springer New York; 1998.
Pfeiffer BE, Foster DJ. Hippocampal place-cell sequences depict future paths to remembered goals. Nature. 2013;497:74–79. doi: 10.1038/nature12112. PubMed DOI PMC
Posani L, Cocco S, Monasson R. Integration and multiplexing of positional and contextual information by the hippocampal network. PLoS Comput. Biol. 2018;14:e1006320. doi: 10.1371/journal.pcbi.1006320. PubMed DOI PMC
Mark S, Romani S, Jezek K, Tsodyks M. Theta-paced flickering between place-cell maps in the hippocampus: a model based on short-term synaptic plasticity. Hippocampus. 2017;27:959–970. doi: 10.1002/hipo.22743. PubMed DOI PMC
Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. Off. J. Soc. Neurosci. 1997;17:5900–5920. doi: 10.1523/JNEUROSCI.17-15-05900.1997. PubMed DOI PMC
Rolls ET, Stringer SM, Trappenberg TP. A unified model of spatial and episodic memory. Proc. R. Soc. Lond. B Biol. Sci. 2002;269:1087–1093. doi: 10.1098/rspb.2002.2009. PubMed DOI PMC
Stella F, Cerasti E, Si B, Jezek K, Treves A. Self-organization of multiple spatial and context memories in the hippocampus. Neurosci. Biobehav. Rev. 2012;36:1609–1625. doi: 10.1016/j.neubiorev.2011.12.002. PubMed DOI
Papp G, Witter MP, Treves A. The CA3 network as a memory store for spatial representations. Learn. Mem. Cold Spring Harb. N. 2007;14:732–744. doi: 10.1101/lm.687407. PubMed DOI
Jezek K, et al. Stress-induced out-of-context activation of memory. PLoS Biol. 2010;8:e1000570. doi: 10.1371/journal.pbio.1000570. PubMed DOI PMC
Crystal JD. Elements of episodic-like memory in animal models. Behav. Processes. 2009;80:269–277. doi: 10.1016/j.beproc.2008.09.009. PubMed DOI
Hampton RR, Schwartz BL. Episodic memory in nonhumans: What, and where, is when? Curr. Opin. Neurobiol. 2004;14:192–197. doi: 10.1016/j.conb.2004.03.006. PubMed DOI
Loh M, Rolls ET, Deco G. A dynamical systems hypothesis of schizophrenia. PLoS Comput. Biol. 2007;3:e228. doi: 10.1371/journal.pcbi.0030228. PubMed DOI PMC
Rolls ET, Loh M, Deco G, Winterer G. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat. Rev. Neurosci. 2008;9:696–709. doi: 10.1038/nrn2462. PubMed DOI