Ablation of CNTN2+ Pyramidal Neurons During Development Results in Defects in Neocortical Size and Axonal Tract Formation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31749685
PubMed Central
PMC6844266
DOI
10.3389/fncel.2019.00454
Knihovny.cz E-zdroje
- Klíčová slova
- CNTN2/TAG-1, anterior commissure, central nervous system, corpus callosum, corticofugal system, corticothalamic axons,
- Publikační typ
- časopisecké články MeSH
Corticothalamic axons express Contactin-2 (CNTN2/TAG-1), a neuronal recognition molecule of the immunoglobulin superfamily involved in neurogenesis, neurite outgrowth, and fasciculation. TAG-1, which is expressed transiently by cortical pyramidal neurons during embryonic development, has been shown to be fundamental for axonal recognition, cellular migration, and neuronal proliferation in the developing cortex. Although Tag-1 -/- mice do not exhibit any obvious defects in the corticofugal system, the role of TAG-1+ neurons during the development of the cortex remains elusive. We have generated a mouse model expressing EGFP under the Tag-1 promoter and encompassing the coding sequence of Diptheria Toxin subunit A (DTA) under quiescence with no effect on the expression of endogenous Tag-1. We show that while the line recapitulates the expression pattern of the molecule, it highlights an extended expression in the forebrain, including multiple axonal tracts and neuronal populations, both spatially and temporally. Crossing these mice to the Emx1-Cre strain, we ablated the vast majority of TAG-1+ cortical neurons. Among the observed defects were a significantly smaller cortex, a reduction of corticothalamic axons as well as callosal and commissural defects. Such defects are common in neurodevelopmental disorders, thus this mouse could serve as a useful model to study physiological and pathophysiological cortical development.
CEITEC Central European Institute of Technology Brno University of Technology Brno Czechia
Center for Brain Research Medical University Vienna Vienna Austria
Department of Basic Science Faculty of Medicine University of Crete Heraklion Greece
Department of Biology Massachusetts Institute of Technology Cambridge MA United States
Department of Molecular Medicine Max Planck Institute of Biochemistry Martinsried Germany
Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
Laboratory of Neurophysiology Université Libre de Bruxelles UNI Brussels Belgium
Zobrazit více v PubMed
Adameyko I., Lallemend F., Aquino J. B., Pereira J. A., Topilko P., Müller T., et al. (2009). Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139, 366–379. 10.1016/j.cell.2009.07.049 PubMed DOI
Alcamo E. A., Chirivella L., Dautzenberg M., Dobreva G., Fariñas I., Grosschedl R., et al. (2008). Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57, 364–377. 10.1016/j.neuron.2007.12.012 PubMed DOI
Allendoerfer K. L., Shatz C. J. (1994). The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 17, 185–218. 10.1146/annurev.ne.17.030194.001153 PubMed DOI
Appel F., Holm J., Conscience J. F., von Bohlen und Halbach F., Faissner A., James P., et al. (1995). Identification of the border between fibronectin type III homologous repeats 2 and 3 of the neural cell adhesion molecule L1 as a neurite outgrowth promoting and signal transducing domain. J. Neurobiol. 28, 297–312. 10.1002/neu.480280304 PubMed DOI
Arlotta P., Molyneaux B. J., Chen J., Inoue J., Kominami R., Macklis J. D. (2005). Neuronal subtype-specific genes that control corticospinal motor neuron development PubMed DOI
Bastakis G. G., Savvaki M., Stamatakis A., Vidaki M., Karagogeos D. (2015). Tag1 deficiency results in olfactory dysfunction through impaired migration of mitral cells. Development 142, 4318–4328. 10.1242/dev.123943 PubMed DOI
Bedogni F., Hodge R. D., Elsen G. E., Nelson B. R., Daza R. A., Beyer R. P., et al. (2010). Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc. Natl. Acad. Sci. U.S.A. 107, 13129–13134. 10.1073/pnas.1002285107 PubMed DOI PMC
Bonetto G., Hivert B., Goutebroze L., Karagogeos D., Crépel V., Faivre-Sarrailh C. (2019). Selective axonal expression of the Kv1 channel complex in pre-myelinated GABAergic hippocampal neurons. Front. Cell. Neurosci. 13:222. 10.3389/fncel.2019.00222 PubMed DOI PMC
Britanova O., de Juan Romero C., Cheung A., Kwan K. Y., Schwark M., Gyorgy A., et al. (2008). Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57, 378–392. 10.1016/j.neuron.2007.12.028 PubMed DOI
Chen B., Wang S. S., Hattox A. M., Rayburn H., Nelson S. B., McConnell S. K. (2008). The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 105, 11382–11387. 10.1073/pnas.0804918105 PubMed DOI PMC
Chen Y., Magnani D., Theil T., Pratt T., Price D. J. (2012). Evidence that descending cortical axons are essential for thalamocortical axons to cross the pallial-subpallial boundary in the embryonic forebrain. PLoS ONE 7:e33105. 10.1371/journal.pone.0033105 PubMed DOI PMC
Chou S. J., Perez-Garcia C. G., Kroll T. T., O'Leary D. D. (2009). Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex. Nat. Neurosci. 12, 1381–1389. 10.1038/nn.2427 PubMed DOI PMC
Deck M., Lokmane L., Chauvet S., Mailhes C., Keita M., Niquille M., et al. (2013). Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 77, 472–484. 10.1016/j.neuron.2012.11.031 PubMed DOI PMC
del Río J. A., Martínez A., Fonseca M., Auladell C., Soriano E. (1995). Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody. Cereb. Cortex 5, 13–21. 10.1093/cercor/5.1.13 PubMed DOI
Denaxa M., Chan C. H., Schachner M., Parnavelas J. G., Karagogeos D. (2001). The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128, 4635–4644. Available online at: https://dev.biologists.org/content/128/22/4635 PubMed
Denaxa M., Kyriakopoulou K., Theodorakis K., Trichas G., Vidaki M., Takeda Y., et al. (2005). The adhesion molecule TAG-1 is required for proper migration of the superficial migratory stream in the medulla but not of cortical interneurons. Dev. Biol. 288, 87–99. 10.1016/j.ydbio.2005.09.021 PubMed DOI
Dodd J., Morton S. B., Karagogeos D., Yamamoto M., Jessell T. M. (1988). Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron 1, 105–116. 10.1016/0896-6273(88)90194-8 PubMed DOI
Espinosa A., Gil-Sanz C., Yanagawa Y., Fairén A. (2009). Two separate subtypes of early non-subplate projection neurons in the developing cerebral cortex of rodents. Front. Neuroanat. 3:27. 10.3389/neuro.05.027.2009 PubMed DOI PMC
Fogarty M., Richardson W. D., Kessaris N. (2005). A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951–1959. 10.1242/dev.01777 PubMed DOI
Furley A. J., Morton S. B., Manalo D., Karagogeos D., Dodd J., Jessell T. M. (1990). The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61, 157–170. 10.1016/0092-8674(90)90223-2 PubMed DOI
Gennarini G., Bizzoca A., Picocci S., Puzzo D., Corsi P., Furley A. J. W. (2017). The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol. Cell. Neurosci. 81, 49–63. 10.1016/j.mcn.2016.11.006 PubMed DOI
Han W., Kwan K. Y., Shim S., Lam M. M., Shin Y., Xu X., et al. (2011). TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc. Natl. Acad. Sci. U.S.A. 108, 3041–3046. 10.1073/pnas.1016723108 PubMed DOI PMC
Herrmann K., Antonini A., Shatz C. J. (1994). Ultrastructural evidence for synaptic interactions between thalamocortical axons and subplate neurons. Eur. J. Neurosci. 6, 1729–1742. 10.1111/j.1460-9568.1994.tb00565.x PubMed DOI
Hevner R. F., Miyashita-Lin E., Rubenstein J. L. (2002). Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other. J. Comp. Neurol. 447, 8–17. 10.1002/cne.10219 PubMed DOI
Hevner R. F., Shi L., Justice N., Hsueh Y., Sheng M., Smiga S., et al. (2001). Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366. 10.1016/S0896-6273(01)00211-2 PubMed DOI
Hoerder-Suabedissen A., Molnár Z. (2013). Molecular diversity of early-born subplate neurons. Cereb. Cortex 23, 1473–1483. 10.1093/cercor/bhs137 PubMed DOI
Hoerder-Suabedissen A., Molnár Z. (2015). Development, evolution and pathology of neocortical subplate neurons. Nat. Rev. Neurosci. 16, 133–146. 10.1038/nrn3915 PubMed DOI
Hoerder-Suabedissen A., Wang W. Z., Lee S., Davies K. E., Goffinet A. M., Rakić S., et al. (2009). Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex. Cereb. Cortex 19, 1738–1750. 10.1093/cercor/bhn195 PubMed DOI
Jones L., López-Bendito G., Gruss P., Stoykova A., Molnár Z. (2002). Pax6 is required for the normal development of the forebrain axonal connections. Development 129, 5041–5052. Available online at: https://dev.biologists.org/content/129/21/5041.long PubMed
Karagogeos D., Morton S. B., Casano F., Dodd J., Jessell T. M. (1991). Developmental expression of the axonal glycoprotein TAG-1: differential regulation by central and peripheral neurons PubMed
Kastriti M. E., Kameneva P., Kamenev D., Dyachuk V., Furlan A., Hampl M., et al. (2019). Schwann cell precursors generate the majority of chromaffin cells in zuckerkandl organ and some sympathetic neurons in paraganglia. Front. Mol. Neurosci. 12:6. 10.3389/fnmol.2019.00006 PubMed DOI PMC
Kessaris N., Fogarty M., Iannarelli P., Grist M., Wegner M., Richardson W. D. (2006). Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179. 10.1038/nn1620 PubMed DOI PMC
Komuta Y., Hibi M., Arai T., Nakamura S., Kawano H. (2007). Defects in reciprocal projections between the thalamus and cerebral cortex in the early development of Fezl-deficient mice. J. Comp. Neurol. 503, 454–465. 10.1002/cne.21401 PubMed DOI
Law C. O., Kirby R. J., Aghamohammadzadeh S., Furley A. J. (2008). The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals. Development 135, 2361–2371. 10.1242/dev.009019 PubMed DOI
Lein E. S., Hawrylycz M. J., Ao N., Ayres M., Bensinger A., Bernard A., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176. 10.1038/nature05453 PubMed DOI
Leone D. P., Heavner W. E., Ferenczi E. A., Dobreva G., Huguenard J. R., Grosschedl R., et al. (2015). Satb2 regulates the differentiation of both callosal and subcerebral projection neurons in the developing cerebral Cortex. Cereb. Cortex 25, 3406–3419. 10.1093/cercor/bhu156 PubMed DOI PMC
Livy D. J., Schalomon P. M., Roy M., Zacharias M. C., Pimenta J., Lent R., et al. (1997). Increased axon number in the anterior commissure of mice lacking a corpus callosum. Exp. Neurol. 146, 491–501. 10.1006/exnr.1997.6564 PubMed DOI
Livy D. J., Wahlsten D. (1997). Retarded formation of the hippocampal commissure in embryos from mouse strains lacking a corpus callosum. Hippocampus 7, 2–14. 10.1002/(SICI)1098-1063(1997)7:1<2::AID-HIPO2>3.0.CO;2-R PubMed DOI
Luukko K., Moe K., Sijaona A., Furmanek T., Hals Kvinnsland I., Midtbø M., et al. (2008). Secondary induction and the development of tooth nerve supply. Ann. Anat. 190, 178–187. 10.1016/j.aanat.2007.10.003 PubMed DOI
Ma Q. H., Futagawa T., Yang W. L., Jiang X. D., Zeng L., Takeda Y., et al. (2008). ATAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat. Cell Biol. 10, 283–294. 10.1038/ncb1690 PubMed DOI
Masuda T., Fukamauchi F., Takeda Y., Fujisawa H., Watanabe K., Okado N., et al. (2004). Developmental regulation of notochord-derived repulsion for dorsal root ganglion axons. Mol. Cell. Neurosci. 25, 217–227. 10.1016/j.mcn.2003.10.005 PubMed DOI
Masuda T., Okado N., Shiga T. (2000). The involvement of axonin-1/SC2 in mediating notochord-derived chemorepulsive activities for dorsal root ganglion neurites. Dev. Biol. 224, 112–121. 10.1006/dbio.2000.9813 PubMed DOI
Masuda T., Tsuji H., Taniguchi M., Yagi T., Tessier-Lavigne M., Fujisawa H., et al. (2003). Differential non-target-derived repulsive signals play a critical role in shaping initial axonal growth of dorsal root ganglion neurons. Dev. Biol. 254, 289–302. 10.1016/S0012-1606(02)00087-8 PubMed DOI
McKenna W. L., Betancourt J., Larkin K. A., Abrams B., Guo C., Rubenstein J. L., et al. (2011). Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J. Neurosci. 31, 549–564. 10.1523/JNEUROSCI.4131-10.2011 PubMed DOI PMC
McKenna W. L., Ortiz-Londono C. F., Mathew T. K., Hoang K., Katzman S., Chen B. (2015). Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 112, 11702–11707. 10.1073/pnas.1504144112 PubMed DOI PMC
Molnár Z., Adams R., Blakemore C. (1998a). Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745. 10.1523/JNEUROSCI.18-15-05723.1998 PubMed DOI PMC
Molnár Z., Adams R., Goffinet A. M., Blakemore C. (1998b). The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse. J. Neurosci. 18, 5746–5765. 10.1523/JNEUROSCI.18-15-05746.1998 PubMed DOI PMC
Molnár Z., Blakemore C. (1995). How do thalamic axons find their way to the cortex? Trends Neurosci. 18, 389–397. 10.1016/0166-2236(95)93935-Q PubMed DOI
Molnár Z., Blakemore C. (1999). Development of signals influencing the growth and termination of thalamocortical axons in organotypic culture. Exp. Neurol. 156, 363–393. 10.1006/exnr.1999.7032 PubMed DOI
Molyneaux B. J., Arlotta P., Menezes J. R., Macklis J. D. (2007). Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437. 10.1038/nrn2151 PubMed DOI
Morcom L. R., Edwards T. J., Richards L. J. (2016). Cortical Architecture, Midline Guidance, and Tractography of 3D White Matter Tracts. Axons and Brain Architecture. Cambridge: Academic Press.
Nikouei K., Muñoz-Manchado A. B., Hjerling-Leffler J. (2016). BCL11B/CTIP2 is highly expressed in GABAergic interneurons of the mouse somatosensory cortex. J. Chem. Neuroanat. 71, 1–5. 10.1016/j.jchemneu.2015.12.004 PubMed DOI
Niquille M., Garel S., Mann F., Hornung J. P., Otsmane B., Chevalley S., et al. (2009). Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C. PLoS Biol. 7:e1000230. 10.1371/journal.pbio.1000230 PubMed DOI PMC
Oguro-Ando A., Zuko A., Kleijer K. T. E, Burbach J. P. H. (2017). A current view on contactin-4,−5, and−6: Implications in neurodevelopmental disorders. Mol. Cell. Neurosci. 81, 72–83. 10.1016/j.mcn.2016.12.004 PubMed DOI
Pedraza M., Hoerder-Suabedissen A., Albert-Maestro M. A., Molnár Z., De Carlos J. A. (2014). Extracortical origin of some murine subplate cell populations. Proc. Natl. Acad. Sci. U.S.A. 111, 8613–8618. 10.1073/pnas.1323816111 PubMed DOI PMC
Perrin F. E., Rathjen F. G., Stoeckli E. T. (2001). Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 30, 707–723. 10.1016/S0896-6273(01)00315-4 PubMed DOI
Savvaki M., Theodorakis K., Zoupi L., Stamatakis A., Tivodar S., Kyriacou K., et al. (2010). The expression of TAG-1 in glial cells is sufficient for the formation of the juxtaparanodal complex and the phenotypic rescue of tag-1 homozygous mutants in the CNS. J. Neurosci. 30, 13943–13954. 10.1523/JNEUROSCI.2574-10.2010 PubMed DOI PMC
Sheen V. L., Ferland R. J., Harney M., Hill R. S., Neal J., Banham A. H., et al. (2006a). Impaired proliferation and migration in human Miller-Dieker neural precursors. Ann. Neurol. 60, 137–144. 10.1002/ana.20843 PubMed DOI
Sheen V. L., Ferland R. J., Neal J., Harney M., Hill R. S., Banham A., et al. (2006b). Neocortical neuronal arrangement in Miller Dieker syndrome. Acta Neuropathol. 111, 489–496. 10.1007/s00401-005-0010-3 PubMed DOI
Shu T., Li Y., Keller A., Richards L. J. (2003). The glial sling is a migratory population of developing neurons. Development 130, 2929–2937. 10.1242/dev.00514 PubMed DOI PMC
Shu T., Richards L. J. (2001). Cortical axon guidance by the glial wedge during the development of the corpus callosum. J. Neurosci. 21, 2749–2758. 10.1523/JNEUROSCI.21-08-02749.2001 PubMed DOI PMC
Silver J., Lorenz S. E., Wahlsten D., Coughlin J. (1982). Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, PubMed DOI
Srinivasan K., Leone D. P., Bateson R. K., Dobreva G., Kohwi Y., Kohwi-Shigematsu T., et al. (2012). A network of genetic repression and derepression specifies projection fates in the developing neocortex. Proc. Natl. Acad. Sci. U.S.A. 109, 19071–19078. 10.1073/pnas.1216793109 PubMed DOI PMC
Srivatsa S., Parthasarathy S., Britanova O., Bormuth I., Donahoo A. L., Ackerman S. L., et al. (2014). Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat. Commun. 5:3708. 10.1038/ncomms4708 PubMed DOI PMC
Stoeckli E. T., Kuhn T. B., Duc C. O., Ruegg M. A., Sonderegger P. (1991). The axonally secreted protein axonin-1 is a potent substratum for neurite growth. J. Cell Biol. 112, 449–455. 10.1083/jcb.112.3.449 PubMed DOI PMC
Takashima S., Becker L. E., Armstrong D. L., Chan F. (1981). Abnormal neuronal development in the visual cortex of the human fetus and infant with down's syndrome. A quantitative and qualitative Golgi study. Brain Res. 225, 1–21. 10.1016/0006-8993(81)90314-0 PubMed DOI
Tesarová M., Zikmund T., Kaucká M., Adameyko I., Jaroš J., Paloušek D., et al. (2016). Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. J. Instrument. 11:C03006 10.1088/1748-0221/11/03/C03006 DOI
Traka M., Dupree J. L., Popko B., Karagogeos D. (2002). The neuronal adhesion protein TAG-1 is expressed by Schwann cells and oligodendrocytes and is localized to the juxtaparanodal region of myelinated fibers. J. Neurosci. 22, 3016–3024. 10.1523/JNEUROSCI.22-08-03016.2002 PubMed DOI PMC
Vidaki M., Tivodar S., Doulgeraki K., Tybulewicz V., Kessaris N., Pachnis V., et al. (2012). Rac1-dependent cell cycle exit of MGE precursors and GABAergic interneuron migration to the cortex. Cereb. Cortex 22, 680–692. 10.1093/cercor/bhr145 PubMed DOI PMC
Wolfer D. P., Giger R. J., Stagliar M., Sonderegger P., Lipp H. P. (1998). Expression of the axon growth-related neural adhesion molecule TAG-1/axonin-1 in the adult mouse brain. Anat. Embryol. 197, 177–185. 10.1007/s004290050129 PubMed DOI
Wolfer D. P., Henehan-Beatty A., Stoeckli E. T., Sonderegger P., Lipp H. P. (1994). Distribution of TAG-1/axonin-1 in fibre tracts and migratory streams of the developing mouse nervous system. J. Comp. Neurol. 345, 1–32. 10.1002/cne.903450102 PubMed DOI
Yamamoto M., Boyer A. M., Crandall J. E., Edwards M., Tanaka H. (1986). Distribution of stage-specific neurite-associated proteins in the developing murine nervous system recognized by a monoclonal antibody. J. Neurosci. 6, 3576–3594. 10.1523/JNEUROSCI.06-12-03576.1986 PubMed DOI PMC
Yoshihara Y., Kawasaki M., Tamada A., Nagata S., Kagamiyama H., Mori K. (1995). Overlapping and differential expression of BIG-2, BIG-1, TAG-1, and F3: four members of an axon-associated cell adhesion molecule subgroup of the immunoglobulin superfamily. J. Neurobiol. 28, 51–69. 10.1002/neu.480280106 PubMed DOI
Zoupi L., Savvaki M., Kalemaki K., Kalafatakis I., Sidiropoulou K., Karagogeos D. (2018). The function of contactin-2/TAG-1 in oligodendrocytes in health and demyelinating pathology. Glia 66, 576–591. 10.1002/glia.23266 PubMed DOI