Polarized Sonic Hedgehog Protein Localization and a Shift in the Expression of Region-Specific Molecules Is Associated With the Secondary Palate Development in the Veiled Chameleon
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32850780
PubMed Central
PMC7399257
DOI
10.3389/fcell.2020.00572
Knihovny.cz E-zdroje
- Klíčová slova
- SHH, chameleon, primary cilia, reptile, secondary palate, skeletogenesis,
- Publikační typ
- časopisecké články MeSH
Secondary palate development is characterized by the formation of two palatal shelves on the maxillary prominences, which fuse in the midline in mammalian embryos. However, in reptilian species, such as turtles, crocodilians, and lizards, the palatal shelves of the secondary palate develop to a variable extent and morphology. While in most Squamates, the palate is widely open, crocodilians develop a fully closed secondary palate. Here, we analyzed developmental processes that underlie secondary palate formation in chameleons, where large palatal shelves extend horizontally toward the midline. The growth of the palatal shelves continued during post-hatching stages and closure of the secondary palate can be observed in several adult animals. The massive proliferation of a multilayered oral epithelium and mesenchymal cells in the dorsal part of the palatal shelves underlined the initiation of their horizontal outgrowth, and was decreased later in development. The polarized cellular localization of primary cilia and Sonic hedgehog protein was associated with horizontal growth of the palatal shelves. Moreover, the development of large palatal shelves, supported by the pterygoid and palatine bones, was coupled with the shift in Meox2, Msx1, and Pax9 gene expression along the rostro-caudal axis. In conclusion, our results revealed distinctive developmental processes that contribute to the expansion and closure of the secondary palate in chameleons and highlighted divergences in palate formation across amniote species.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czechia
Department of Radiation Dosimetry Nuclear Physics Institute Czech Academy of Sciences Prague Czechia
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Abramyan J., Leung K. J., Richman J. M. (2014). Divergent palate morphology in turtles and birds correlates with differences in proliferation and BMP2 expression during embryonic development. PubMed DOI PMC
Abramyan J., Richman J. M. (2015). Recent insights into the morphological diversity in the amniote primary and secondary palates. PubMed DOI PMC
Anderson C. V., Deban S. M. (2010). Ballistic tongue projection in chameleons maintains high performance at low temperature. PubMed DOI PMC
Anderson C. V., Deban S. M. (2012). Thermal effects on motor control and in vitro muscle dynamics of the ballistic tongue apparatus in chameleons. PubMed DOI
Andrews R. M. (2007). Effects of temperature on embryonic development of the veiled chameleon, PubMed DOI
Andrews R. M., Donoghue S. (2004). Effects of temperature and moisture on embryonic diapause of the veiled chameleon ( PubMed DOI
Brugmann S. A., Allen N. C., James A. W., Mekonnen Z., Madan E., Helms J. A. (2010). A primary cilia-dependent etiology for midline facial disorders. PubMed DOI PMC
Buchtová M., Zahradněček O., Balková S., Tucker A. S. (2013). Odontogenesis in the veiled chameleon ( PubMed DOI
Bush J. O., Jiang R. (2012). Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. PubMed DOI PMC
Crompton A. (1995).
Daza J. D., Mapps A. A., Lewis P. J., Thies M. L., Bauer A. M. (2015). Peramorphic traits in the tokay gecko skull. PubMed DOI
Diaz J. R. E., Trainor P. A. (2019).
Diaz R. E., Anderson C. V., Baumann D. P., Kupronis R., Jewell D., Piraquive C., et al. (2015). The veiled chameleon ( PubMed
Diaz R. E., Shylo N. A., Roellig D., Bronner M., Trainor P. A. (2019). Filling in the phylogenetic gaps: induction, migration, and differentiation of neural crest cells in a squamate reptile, the veiled chameleon ( PubMed DOI
Diaz R. E., Trainor P. A. (2015). Hand/foot splitting and the ’re-evolution’ of mesopodial skeletal elements during the evolution and radiation of chameleons. PubMed DOI PMC
Dosedělová H., Štěpánková K., Zikmund T., Lesot H., Kaiser J., Novotný K., et al. (2016). Age-related changes in the tooth-bone interface area of acrodont dentition in the chameleon. PubMed DOI PMC
Duldulao N. A., Lee S., Sun Z. (2009). Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion. PubMed DOI PMC
Ferguson M. W. (1981a). Review: the value of the American alligator ( PubMed
Ferguson M. W. (1981b). The structure and development of the palate in PubMed DOI
Ferguson M. W. (1987). Palate development: mechanisms and malformations. PubMed DOI
Ferguson M. W. (1988). Palate development. PubMed
Grbic D., Saenko S. V., Randriamoria T. M., Debry A., Raselimanana A. P., Milinkovitch M. C. (2015). Phylogeography and support vector machine classification of colour variation in panther chameleons. PubMed DOI PMC
Greene R. M., Pratt R. M. (1976). Developmental aspects of secondary palate formation. PubMed
Hampl M., Cela P., Szabo-Rogers H. L., Bosakova M. K., Dosedelova H., Krejci P., et al. (2017). Role of primary cilia in odontogenesis. PubMed DOI PMC
Hanken J., Thorogood P. (1993). Evolution and development of the vertebrate skull: the role of pattern formation. PubMed DOI
Haycraft C. J., Banizs B., Aydin-Son Y., Zhang Q., Michaud E. J., Yoder B. K. (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PubMed DOI PMC
Hedges S. B. (2012). Amniote phylogeny and the position of turtles. PubMed DOI PMC
Hernández-Jaimes C., Jerez A., Ramírez-Pinilla M. P. (2012). Embryonic development of the skull of the Andean lizard PubMed DOI PMC
Herrel A., Redding C. L., Meyers J. J., Nishikawa K. C. (2014). The scaling of tongue projection in the veiled chameleon, PubMed DOI
Huangfu D., Anderson K. V. (2005). Cilia and Hedgehog responsiveness in the mouse. PubMed DOI PMC
Huangfu D., Liu A., Rakeman A. S., Murcia N. S., Niswander L., Anderson K. V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. PubMed DOI
Iordansky N. (2016). Functional relationships in the jaw apparatus of the chameleons and the evolution of adaptive complexes.
Iwabe N., Hara Y., Kumazawa Y., Shibamoto K., Saito Y., Miyata T., et al. (2005). Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins. PubMed DOI
Jankowski R. (2013).
Jin J. Z., Ding J. (2006). Analysis of Meox-2 mutant mice reveals a novel postfusion-based cleft palate. PubMed DOI
Jin J. Z., Ding J. (2015). Strain-dependent gene expression during mouse embryonic palate development. PubMed DOI PMC
Johnson M. L. (1933). The time and order of appearance of ossification centers in the albino mouse. DOI
Jones M. E., Werneburg I., Curtis N., Penrose R., O’higgins P., Fagan M. J., et al. (2012). The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea) and skull shape in testudines. PubMed DOI PMC
Kanazawa E., Mochizuki K. (1974). The time and order of appearance of ossification centers in the hamster before birth. PubMed DOI
Kimmel C. B., Sidlauskas B., Clack J. A. (2009). Linked morphological changes during palate evolution in early tetrapods. PubMed DOI PMC
Krmpotić-Nemanić J., Vinter I., Marusić A. (2006). Relations of the pterygoid hamulus and hard palate in children and adults: anatomical implications for the function of the soft palate. PubMed DOI
Le Pabic P., Ng C., Schilling T. F. (2014). Fat-Dachsous signaling coordinates cartilage differentiation and polarity during craniofacial development. PubMed DOI PMC
Li J., Johnson C. A., Smith A. A., Hunter D. J., Singh G., Brunski J. B., et al. (2016). Linking suckling biomechanics to the development of the palate. PubMed PMC
Mo R., Freer A. M., Zinyk D. L., Crackower M. A., Michaud J., Heng H. H., et al. (1997). Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. PubMed
Mohamed R. (2018). Anatomical and radiographic study on the skull and mandible of the common opossum. PubMed DOI PMC
Namkoong B. (2015).
Ollonen J., Da Silva F. O., Mahlow K., Di-Poï N. (2018). Skull development, ossification pattern, and adult shape in the emerging lizard model organism. PubMed DOI PMC
Pinto B. J., Card D. C., Castoe T. A., Diaz R. E., Nielsen S. V., Trainor P. A., et al. (2019). The transcriptome of the veiled chameleon ( PubMed DOI
Presley R., Steel F. L. (1978). The pterygoid and ectopterygoid in mammals. PubMed DOI
Rice R., Connor E., Rice D. P. (2006). Expression patterns of Hedgehog signalling pathway members during mouse palate development. PubMed DOI
Richman J. M., Buchtová M., Boughner J. C. (2006). Comparative ontogeny and phylogeny of the upper jaw skeleton in amniotes. PubMed DOI
Rieppel O. (1993). Studies on skeleton formation in reptiles. v. Patterns of ossification in the skeleton of DOI
Rieppel O., Crumly C. (2009). Paedomorphosis and skull structure in DOI
Romer A. S. (1956).
Schock E. N., Chang C. F., Youngworth I. A., Davey M. G., Delany M. E., Brugmann S. A. (2016). Utilizing the chicken as an animal model for human craniofacial ciliopathies. PubMed DOI PMC
Sheil C. A. (2005). Skeletal development of PubMed DOI
Shi J., Zhao Y., Galati D., Winey M., Klymkowsky M. W. (2014). Chibby functions in PubMed DOI PMC
Sperber G. H., Sperber S. M., Guttmann G. D. (eds) (2012).
Stower M. J., Diaz R. E., Fernandez L. C., Crother M. W., Crother B., Marco A., et al. (2015). Bi-modal strategy of gastrulation in reptiles. PubMed DOI
Tamarin A. (1982). The formation of the primitive choanae and the junction of the primary and secondary palates in the mouse. PubMed DOI
Tokita M., Chaeychomsri W., Siruntawineti J. (2013). Developmental basis of toothlessness in turtles: insight into convergent evolution of vertebrate morphology. PubMed DOI
Tolley K. A., Herrel A. (2015).
Wheatley D. N., Wang A. M., Strugnell G. E. (1996). Expression of primary cilia in mammalian cells. PubMed DOI
Yu K., Ornitz D. M. (2011). Histomorphological study of palatal shelf elevation during murine secondary palate formation. PubMed DOI PMC
Zahradnicek O., Buchtova M., Dosedelova H., Tucker A. S. (2014). The development of complex tooth shape in reptiles. PubMed DOI PMC
Zhang Z., Song Y., Zhao X., Zhang X., Fermin C., Chen Y. (2002). Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. PubMed
Zheng Y., Wiens J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. PubMed DOI
Zhou J., Gao Y., Lan Y., Jia S., Jiang R. (2013). Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. PubMed DOI PMC