Role of Primary Cilia in Odontogenesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P30 DE020740
NIDCR NIH HHS - United States
PubMed
28605602
PubMed Central
PMC5524235
DOI
10.1177/0022034517713688
Knihovny.cz E-zdroje
- Klíčová slova
- craniofacial anomalies, growth/development, mineralized tissue/development, odontoblast(s), oral pathology, signal transduction,
- MeSH
- buněčná diferenciace fyziologie MeSH
- cilie fyziologie MeSH
- lidé MeSH
- maxilofaciální vývoj fyziologie MeSH
- odontogeneze fyziologie MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Primary cilium is a solitary organelle that emanates from the surface of most postmitotic mammalian cells and serves as a sensory organelle, transmitting the mechanical and chemical cues to the cell. Primary cilia are key coordinators of various signaling pathways during development and maintenance of tissue homeostasis. The emerging evidence implicates primary cilia function in tooth development. Primary cilia are located in the dental epithelium and mesenchyme at early stages of tooth development and later during cell differentiation and production of hard tissues. The cilia are present when interactions between both the epithelium and mesenchyme are required for normal morphogenesis. As the primary cilium coordinates several signaling pathways essential for odontogenesis, ciliary defects can interrupt the latter process. Genetic or experimental alterations of cilia function lead to various developmental defects, including supernumerary or missing teeth, enamel and dentin hypoplasia, or teeth crowding. Moreover, dental phenotypes are observed in ciliopathies, including Bardet-Biedl syndrome, Ellis-van Creveld syndrome, Weyers acrofacial dysostosis, cranioectodermal dysplasia, and oral-facial-digital syndrome, altogether demonstrating that primary cilia play a critical role in regulation of both the early odontogenesis and later differentiation of hard tissue-producing cells. Here, we summarize the current evidence for the localization of primary cilia in dental tissues and the impact of disrupted cilia signaling on tooth development in ciliopathies.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Experimental Biology Masaryk University Brno Czech Republic
Department of Physiology University of Veterinary and Pharmaceutical Sciences Brno Czech Republic
Institute of Animal Physiology and Genetics v v i Czech Academy of Sciences Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Alazami AM, Seidahmed MZ, Alzahrani F, Mohammed AO, Alkuraya FS. 2014. Novel IFT122 mutation associated with impaired ciliogenesis and cranioectodermal dysplasia. Mol Genet Genomic Med. 2(2):103–106. PubMed PMC
Andersson EM, Axelsson S, Gjølstad LF, Storhaug K. 2013. Taurodontism: a minor diagnostic criterion in Laurence-Moon/Bardet-Biedl syndromes. Acta Odontol Scand. 71(6):1671–1674. PubMed
Baujat G, Le Merrer M. 2007. Ellis-van Creveld syndrome. Orphanet J Rare Dis. 2:27. PubMed PMC
Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. 1999. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet. 36(6):437–446. PubMed PMC
Blacque OE, Leroux MR. 2006. Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport. Cell Mol Life Sci. 63(18):2145–2161. PubMed PMC
Blacque OE, Reardon MJ, Li C, McCarthy J, Mahjoub MR, Ansley SJ, Badano JL, Mah AK, Beales PL, Davidson WS, et al. 2004. Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev. 18(13):1630–1642. PubMed PMC
Blair HJ, Tompson S, Liu YN, Campbell J, MacArthur K, Ponting CP, Ruiz-Perez VL, Goodship JA. 2011. Evc2 is a positive modulator of Hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus. BMC Biol. 9:14. PubMed PMC
Borgström MK, Riise R, Tornqvist K, Granath L. 1996. Anomalies in the permanent dentition and other oral findings in 29 individuals with Laurence-Moon-Bardet-Biedl syndrome. J Oral Pathol Med. 25(2):86–89. PubMed
Brugmann SA, Allen NC, James AW, Mekonnen Z, Madan E, Helms JA. 2010. A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet. 19(8):1577–1592. PubMed PMC
Buchtova M, Handrigan GR, Tucker AS, Lozanoff S, Town L, Fu K, Diewert VM, Wicking C, Richman JM. 2008. Initiation and patterning of the snake dentition are dependent on Sonic hedgehog signaling. Dev Biol. 319(1):132–145. PubMed
Chlastakova I, Lungova V, Wells K, Tucker AS, Radlanski RJ, Misek I, Matalova E. 2011. Morphogenesis and bone integration of the mouse mandibular third molar. Eur J Oral Sci. 119(4):265–274. PubMed
Christensen ST, Morthorst SK, Mogensen JB, Pedersen LB. 2016. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor beta (TGF-beta) signaling. Cold Spring Harb Perspect Biol [epub ahead of print 16 September 2016]. doi:10.1101/cshperspect.a028167 PubMed DOI PMC
Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. 1998. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol. 141(4):993–1008. PubMed PMC
Curry CJ, Hall BD. 1979. Polydactyly, conical teeth, nail dysplasia, and short limbs: a new autosomal dominant malformation syndrome. Birth Defects Orig Artic Ser. 15(5B):253–263. PubMed
Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. 2000. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 127(22):4775–4785. PubMed
Dodge JA, Kernohan DC. 1967. Oral-facial-digital syndrome. Arch Dis Child. 42(222):214–219. PubMed PMC
Dorn KV, Hughes CE, Rohatgi R. 2012. A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia. Dev Cell. 23(4):823–835. PubMed PMC
Dosedělová H, Dumková J, Lesot H, Glocová K, Kunová M, Tucker AS, Veselá I, Krejčí P, Tichý F, Hampl A, et al. 2015. Fate of the molar dental lamina in the monophyodont mouse. PLoS One. 10(5):e0127543. PubMed PMC
Ferrante MI, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, Dolle P, Franco B. 2006. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet. 38(1):112–117. PubMed
Forsythe E, Beales PL. 2013. Bardet-Biedl syndrome. Eur J Hum Genet. 21(1):8–13. PubMed PMC
Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P, van Lier B, Steehouwer M, van Reeuwijk J, Kant SG, et al. 2010. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet. 87(3):418–423. PubMed PMC
Goetz SC, Anderson KV. 2010. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. 11(5):331–344. PubMed PMC
Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard O, Lee I, Weiss GS, Liu KJ, Marcotte EM, Wallingford JB, et al. 2009. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol. 11(10):1225–1232. PubMed PMC
Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. 2005. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1(4):e53. PubMed PMC
Hisamoto M, Goto M, Muto M, Nio-Kobayashi J, Iwanaga T, Yokoyama A. 2016. Developmental changes in primary cilia in the mouse tooth germ and oral cavity. Biomed Res. 37(3):207–214. PubMed
Howard TD, Guttmacher AE, McKinnon W, Sharma M, McKusick VA, Jabs EW. 1997. Autosomal dominant postaxial polydactyly, nail dystrophy, and dental abnormalities map to chromosome 4p16, in the region containing the Ellis-van Creveld syndrome locus. Am J Hum Genet. 61(6):1405–1412. PubMed PMC
Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. 2003. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 426(6962):83–87. PubMed
Irigoín F, Badano JL. 2011. Keeping the balance between proliferation and differentiation: the primary cilium. Curr Genomics. 12(4):285–297. PubMed PMC
Jerman S, Ward HH, Lee R, Lopes CA, Fry AM, MacDougall M, Wandinger-Ness A. 2014. OFD1 and flotillins are integral components of a ciliary signaling protein complex organized by polycystins in renal epithelia and odontoblasts. PLoS One. 9(9):e106330. PubMed PMC
Kawasaki M, Izu Y, Hayata T, Ideno H, Nifuji A, Sheffield VC, Ezura Y, Noda M. 2016. Bardet-Biedl syndrome 3 regulates development of cranial base midline structures. Bone. 101;179–190. PubMed PMC
Kero D, Novakovic J, Vukojevic K, Petricevic J, Kalibovic Govorko D, Biocina-Lukenda D, Saraga-Babic M. 2014. Expression of Ki-67, Oct-4, g-tubulin and a-tubulin in human tooth development. Arch Oral Biol. 59(11):1119–1129. PubMed
Lancaster MA, Schroth J, Gleeson JG. 2011. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol. 13(6):700–707. PubMed PMC
Lee JE, Gleeson JG. 2011. A systems-biology approach to understanding the ciliopathy disorders. Genome Med. 3(9):59. PubMed PMC
Lehman JM, Laag E, Michaud EJ, Yoder BK. 2009. An essential role for dermal primary cilia in hair follicle morphogenesis. J Invest Dermatol. 129(2):438–448. PubMed PMC
Levin LS, Perrin JC, Ose L, Dorst JP, Miller JD, McKusick VA. 1977. A heritable syndrome of craniosynostosis, short thin hair, dental abnormalities, and short limbs: cranioectodermal dysplasia. J Pediatr. 90(1):55–61. PubMed
Liu B, Chen S, Cheng D, Jing W, Helms JA. 2014. Primary cilia integrate hedgehog and Wnt signaling during tooth development. J Dent Res. 93(5):475–482. PubMed PMC
Magloire H, Couble ML, Romeas A, Bleicher F. 2004. Odontoblast primary cilia: facts and hypotheses. Cell Biol Int. 28(2):93–99. PubMed
Nakatomi M, Hovorakova M, Gritli-Linde A, Blair HJ, MacArthur K, Peterka M, Lesot H, Peterkova R, Ruiz-Perez VL, Goodship JA, et al. 2013. Evc regulates a symmetrical response to Shh signaling in molar development. J Dent Res. 92(3):222–228. PubMed
Ohazama A, Haycraft CJ, Seppala M, Blackburn J, Ghafoor S, Cobourne M, Martinelli DC, Fan CM, Peterkova R, Lesot H, et al. 2009. Primary cilia regulate Shh activity in the control of molar tooth number. Development. 136(6):897–903. PubMed PMC
Qin J, Lin Y, Norman RX, Ko HW, Eggenschwiler JT. 2011. Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc Natl Acad Sci U S A. 108(4):1456–1461. PubMed PMC
Raghavan V, Weisz OA. 2016. Discerning the role of mechanosensors in regulating proximal tubule function. Am J Physiol Renal Physiol. 310(1):F1–F5. PubMed PMC
Rohatgi R, Milenkovic L, Scott MP. 2007. Patched1 regulates hedgehog signaling at the primary cilium. Science. 317(5836):372–376. PubMed
Romio L, Fry AM, Winyard PJ, Malcolm S, Woolf AS, Feather SA. 2004. OFD1 is a centrosomal/basal body protein expressed during mesenchymal-epithelial transition in human nephrogenesis. J Am Soc Nephrol. 15(10):2556–2568. PubMed
Roubicek M, Spranger J. 1984. Weyers acrodental dysostosis in a family. Clin Genet. 26(6):587–590. PubMed
Ruiz-Perez VL, Ide SE, Strom TM, Lorenz B, Wilson D, Woods K, King L, Francomano C, Freisinger P, Spranger S, et al. 2000. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nat Genet. 24(3):283–286. PubMed
Ruiz-Perez VL, Tompson SW, Blair HJ, Espinoza-Valdez C, Lapunzina P, Silva EO, Hamel B, Gibbs JL, Young ID, Wright MJ, et al. 2003. Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. Am J Hum Genet. 72(3):728–732. PubMed PMC
Sarkar L, Cobourne M, Naylor S, Smalley M, Dale T, Sharpe PT. 2000. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A. 97(9):4520–4524. PubMed PMC
Sasano Y. 1986. Dynamic behavior of ciliated centrioles in rat incisor ameloblasts during cell differentiation. Arch Histol Jpn. 49(4):437–448. PubMed
Sensenbrenner JA, Dorst JP, Owens RP. 1975. New syndrome of skeletal, dental and hair anomalies. Birth Defects Orig Artic Ser. 11(2):372–379. PubMed
Seo S, Zhang Q, Bugge K, Breslow DK, Searby CC, Nachury MV, Sheffield VC. 2011. A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and smoothened. PLoS Genet. 7(11):e1002358. PubMed PMC
Schock EN, Struve JN, Chang CF, Williams TJ, Snedeker J, Attia AC, Stottmann RW, Brugmann SA. 2016. A tissue-specific role for intraflagellar transport genes during craniofacial development. PLoS One. 12(3): e0174206. PubMed PMC
Singla V, Romaguera-Ros M, Garcia-Verdugo JM, Reiter JF. 2010. Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev Cell. 18(3):410–424. PubMed PMC
Thivichon-Prince B, Couble ML, Giamarchi A, Delmas P, Franco B, Romio L, Struys T, Lambrichts I, Ressnikoff D, Magloire H, et al. 2009. Primary cilia of odontoblasts: possible role in molar morphogenesis. J Dent Res. 88(10):910–915. PubMed
Walczak-Sztulpa J, Eggenschwiler J, Osborn D, Brown DA, Emma F, Klingenberg C, Hennekam RC, Torre G, Garshasbi M, Tzschach A, et al. 2010. Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet. 86(6):949–956. PubMed PMC
Waters AM, Beales PL. 2011. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 26(7):1039–1056. PubMed PMC
Weatherbee SD, Niswander LA, Anderson KV. 2009. A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum Mol Genet. 18(23):4565–4575. PubMed PMC
Wheatley DN, Wang AM, Strugnell GE. 1996. Expression of primary cilia in mammalian cells. Cell Biol Int. 20(1):73–81. PubMed
Ye X, Song G, Fan M, Shi L, Jabs EW, Huang S, Guo R, Bian Z. 2006. A novel heterozygous deletion in the EVC2 gene causes Weyers acrofacial dysostosis. Hum Genet. 119(1-2):199–205. PubMed
Young ID. 1989. Cranioectodermal dysplasia (Sensenbrenner’s syndrome). J Med Genet. 26(6):393–396. PubMed PMC
Zhang H, Takeda H, Tsuji T, Kamiya N, Kunieda T, Mochida Y, Mishina Y. 2017. Loss of function of Evc2 in dental mesenchyme leads to hypomorphic enamel. J Dent Res. 96(4):421–429. PubMed PMC
Zhang H, Takeda H, Tsuji T, Kamiya N, Rajderkar S, Louie K, Collier C, Scott G, Ray M, Mochida Y, et al. 2015. Generation of Evc2/Limbin global and conditional KO mice and its roles during mineralized tissue formation. Genesis. 53(9):612–626. PubMed PMC
Zhang Q, Murcia NS, Chittenden LR, Richards WG, Michaud EJ, Woychik RP, Yoder BK. 2003. Loss of the Tg737 protein results in skeletal patterning defects. Dev Dyn. 227(1):78–90. PubMed
Zhang Z, Wlodarczyk BJ, Niederreither K, Venugopalan S, Florez S, Finnell RH, Amendt BA. 2011. Fuz regulates craniofacial development through tissue specific responses to signaling factors. PLoS One. 6(9):e24608. PubMed PMC