Primary cilia and hypoxia-associated signaling in developmental odontogenic cysts in relation to autosomal dominant polycystic kidney disease - A novel insight

. 2023 Jun ; 9 (6) : e17130. [epub] 20230609

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37389068
Odkazy

PubMed 37389068
PubMed Central PMC10300219
DOI 10.1016/j.heliyon.2023.e17130
PII: S2405-8440(23)04338-4
Knihovny.cz E-zdroje

Developmental cysts are pathological epithelial-lined cavities arising in various organs as a result of systemic or hereditary diseases. Molecular mechanisms involved in the formation of developmental odontogenic cysts (OCs) are not fully understood yet; the cystogenesis of renal cysts originating from the autosomal dominant polycystic kidney disease (ADPKD) has been, however, explored in much greater detail. This narrative review aimed i) to summarize molecular and cellular processes involved in the formation and growth of developmental OCs, especially dentigerous cysts (DCs) and odontogenic keratocysts (OKCs), ii) to find if there are any similarities in their cystogenesis to ADPKD cysts, and, based on that, iii) to suggest potential factors, candidate molecules, and mechanisms that could be involved in the DC formation, thus proposing further research directions. Here we suggest a possible association of developmental OCs with primary cilia disruption and with hypoxia, which have been previously linked with cyst formation in ADPKD patients. This is illustrated on the imagery of tissues from an ADPKD patient (renal cyst) and from developmental OCs, supporting the similarities in cell proliferation, apoptosis, and primary cilia distribution in DC/OKC/ADPKD tissues. Based on all that, we propose a novel hypothesis of OCs formation suggesting a crucial role of mutations associated with the signaling pathways of primary cilia (in particular, Sonic Hedgehog). These can lead to excessive proliferation and formation of cell agglomerates, which is followed by hypoxia-driven apoptosis in the centers of such agglomerates (controlled by molecules such as Hypoxia-inducible factor-1 alpha), leading to cavity formation and, finally, the OCs development. Based on this, we propose future perspectives in the investigation of OC pathogenesis.

Clinic of Maxillofacial Surgery University Hospital Brno Jihlavska 20 62500 Brno Czech Republic

Clinic of Maxillofacial Surgery University Hospital Ostrava 17 Listopadu 1790 5 70800 Ostrava Poruba Czech Republic

Clinic of Stomatology Institution Shared with St Anne's University Hospital Faculty of Medicine Masaryk University Pekarska 664 53 60200 Brno Czech Republic

Department of Anatomy Histology and Embryology University of Veterinary and Pharmaceutical Sciences Palackého tř 1946 1 61242 Brno Královo Pole Czech Republic

Department of Burns and Plastic Surgery University Hospital Brno Jihlavska 20 62500 Brno Czech Republic

Department of Experimental Biology Faculty of Science Masaryk University Kamenice 5 62500 Brno Czech Republic

Department of Histology and Embryology Faculty of Medicine Masaryk University Kamenice 5 62500 Brno Czech Republic

Department of Internal Medicine and Gastroenterology University Hospital Brno Jihlavska 20 62500 Brno Czech Republic

Department of Pathological Morphology and Parasitology University of Veterinary Sciences Palackého tř 1946 1 61242 Brno Královo Pole Czech Republic

Department of Radiology and Nuclear Medicine University Hospital Brno Jihlavska 20 62500 Brno Czech Republic

Faculty of Medicine Masaryk University Kamenice 5 62500 Brno Czech Republic

Laboratory of Molecular Morphogenesis Institute of Animal Physiology and Genetics Czech Academy of Sciences Veveří 97 602 00 Brno Czech Republic

RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czech Republic

Zobrazit více v PubMed

Bilodeau E.A., Prasad J.L., Alawi F., et al. Molecular and genetic aspects of odontogenic lesions. Head Neck Pathol. 2014;8:400–410. doi: 10.1007/s12105-014-0588-7. PubMed DOI PMC

Pavelić B., Levanat S., Crnić I., et al. PTCH gene altered in dentigerous cysts. J. Oral Pathol. Med. 2001;30:569–576. doi: 10.1034/j.1600-0714.2001.300911.x. PubMed DOI

Speight P.M. fifth ed. Wiley-Blackwell; Hoboken, NJ: 2022. Shear’s Cysts of the Oral and Maxillofacial Regions.

Smith R.A. In: Chapter 25. Jaw Cysts. third ed. Lalwani A.K., editor. The McGraw-Hill Companies; New York, NY: 2012. pp. 394–406. (CURRENT Diagnosis & Treatment in Otolaryngology—Head & Neck Surgery).

Johnson N.R., Gannon O.M., Savage N.W., Batstone M.D. Frequency of odontogenic cysts and tumors: a systematic review. J. Investig. Clin. Dent. 2014;5:9–14. doi: 10.1111/jicd.12044. PubMed DOI

Levanat S., Pavelić B., Crnić I., et al. Involvement of PTCH gene in various noninflammatory cysts. J. Mol. Med. 2000;78:140–146. doi: 10.1007/s001090000090. PubMed DOI

Yin X., Prince W.K., Blumenfeld J.D., et al. Spleen phenotype in autosomal dominant polycystic kidney disease. Clin. Radiol. 2019;74:975.e17–975.e24. doi: 10.1016/j.crad.2019.08.015. PubMed DOI

Vasileva V.Y., Sultanova R.F., Sudarikova A.V., et al. Insights into the molecular mechanisms of polycystic kidney diseases. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.693130. PubMed DOI PMC

Ghafouri-Fard S., Atarbashi-Moghadam S., Taheri M. Genetic factors in the pathogenesis of ameloblastoma, dentigerous cyst and odontogenic keratocyst. Gene. 2021;771 doi: 10.1016/j.gene.2020.145369. PubMed DOI

Koslowski S., Latapy C., Auvray P., et al. An overview of in vivo and in vitro models for autosomal dominant polycystic kidney disease: a journey from 3D-cysts to mini-pigs. Int. J. Mol. Sci. 2020;21:E4537. doi: 10.3390/ijms21124537. PubMed DOI PMC

Ma M. Cilia and polycystic kidney disease. Semin. Cell Dev. Biol. 2021;110:139–148. doi: 10.1016/j.semcdb.2020.05.003. PubMed DOI

Buchholz B., Eckardt K.-U. Role of oxygen and the HIF-pathway in polycystic kidney disease. Cell. Signal. 2020;69 doi: 10.1016/j.cellsig.2020.109524. PubMed DOI

Anvarian Z., Mykytyn K., Mukhopadhyay S., et al. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 2019;15:199–219. doi: 10.1038/s41581-019-0116-9. PubMed DOI PMC

Thivichon-Prince B., Couble M.L., Giamarchi A., et al. Primary cilia of odontoblasts: possible role in molar morphogenesis. J. Dent. Res. 2009;88:910–915. doi: 10.1177/0022034509345822. PubMed DOI

Hampl M., Cela P., Szabo-Rogers H.L., et al. Role of primary cilia in odontogenesis. J. Dent. Res. 2017;96:965–974. doi: 10.1177/0022034517713688. PubMed DOI PMC

Anoop U.R., Verma K., Narayanan K. Primary cilia in the pathogenesis of dentigerous cyst: a new hypothesis based on role of primary cilia in autosomal dominant polycystic kidney disease. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011;111:608–617. doi: 10.1016/j.tripleo.2010.12.016. PubMed DOI

Pandiar D., Kumar A., Shameena P.M. Primary cilia in odontogenic cysts. Int. Poster J. Dent. Oral Med. 2013;2 https://www.quintessence-publishing.com/deu/en/journal/international-poster-journal-of-dentistry-and-oral-medicine/2013/02 poster 651. (accessed April 23, 2023)

Filušová J., Putnová I., Hurník P., et al. Alteration of primary cilia morphology and associated signalling in ameloblastoma. Arch. Oral Biol. 2022;142 doi: 10.1016/j.archoralbio.2022.105499. PubMed DOI

Barrett A.W., Sneddon K.J., Tighe J.V., et al. Dentigerous cyst and ameloblastoma of the jaws. Int. J. Surg. Pathol. 2017;25:141–147. doi: 10.1177/1066896916666319. PubMed DOI

Kondamari S.K., Taneeru S., Guttikonda V.R., et al. Ameloblastoma arising in the wall of dentigerous cyst: report of a rare entity. J. Oral Maxillofac. Pathol. 2018;22 doi: 10.4103/jomfp.JOMFP_197_15. S7–S10. PubMed DOI PMC

Bhushan N.S., Rao N.M., Navatha M., et al. Ameloblastoma arising from a dentigerous cyst-a case report. J. Clin. Diagn. Res. 2014;8:ZD23–25. doi: 10.7860/JCDR/2014/5944.4387. PubMed DOI PMC

Jayanandan M., Shamsudeen S.M., Srinivasan S.K., et al. Desmoplastic ameloblastoma arising in a dentigerous cyst - a case report and discussion. J. Clin. Diagn. Res. 2016;10:ZD38–40. doi: 10.7860/JCDR/2016/20013.8362. PubMed DOI PMC

Kumar V.M., Chakravarthy A., Sathyanarayanan R., et al. Hybrid ameloblastoma arising from a treated odontogenic keratocyst of the mandible: a case report with literature review. Indian J. Otolaryngol. Head Neck Surg. 2022;74:6180–6188. doi: 10.1007/s12070-021-02889-y. PubMed DOI PMC

Ta C.M., Vien T.N., Ng L.C.T., DeCaen P.G. Structure and function of polycystin channels in primary cilia. Cell. Signal. 2020;72 doi: 10.1016/j.cellsig.2020.109626. PubMed DOI PMC

Park E.Y., Sung Y.H., Yang M.H., et al. Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J. Biol. Chem. 2009;284:7214–7222. doi: 10.1074/jbc.M805890200. PubMed DOI PMC

Nadar Singarayan J.M., Rooban T., Joshua E., et al. Immunohistochemical study of polycystin-1 in dentigerous cysts. Indian J. Dent. Res. 2014;25:762–766. doi: 10.4103/0970-9290.152198. PubMed DOI

Chae S.W., Cho E.-Y., Park M.S., et al. Polycystin-1 expression in fetal, adult and autosomal dominant polycystic kidney. J. Kor. Med. Sci. 2006;21:425–429. doi: 10.3346/jkms.2006.21.3.425. PubMed DOI PMC

Li H., Yang L., Hou Y., et al. Potential involvement of polycystins in the pathogenesis of ameloblastomas: analysis based on bioinformatics and immunohistochemistry. Arch. Oral Biol. 2023;149 doi: 10.1016/j.archoralbio.2023.105662. PubMed DOI

Castelli M., De Pascalis C., Distefano G., et al. Regulation of the microtubular cytoskeleton by Polycystin-1 favors focal adhesions turnover to modulate cell adhesion and migration. BMC Cell Biol. 2015;16:15. doi: 10.1186/s12860-015-0059-3. PubMed DOI PMC

Drummond I.A. Polycystins, focal adhesions and extracellular matrix interactions. Biochim. Biophys. Acta. 2011;1812:1322–1326. doi: 10.1016/j.bbadis.2011.03.003. PubMed DOI PMC

Godoy G.P., da Silveira E.J.D., Lins R.D.A.U., et al. Immunohistochemical profile of integrins in enlarged dental follicles and dentigerous cysts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007;104:e29–e34. doi: 10.1016/j.tripleo.2007.05.024. PubMed DOI

Battini L., Fedorova E., Macip S., et al. Stable knockdown of polycystin-1 confers integrin-alpha2beta1-mediated anoikis resistance. J. Am. Soc. Nephrol. 2006;17:3049–3058. doi: 10.1681/ASN.2006030234. PubMed DOI

Lee K., Boctor S., Barisoni L.M.C., et al. Inactivation of integrin-β1 prevents the development of polycystic kidney disease after the loss of polycystin-1. J. Am. Soc. Nephrol. 2015;26:888–895. doi: 10.1681/ASN.2013111179. PubMed DOI PMC

Zhang Y., Reif G., Wallace D.P. Extracellular matrix, integrins, and focal adhesion signaling in polycystic kidney disease. Cell. Signal. 2020;72 doi: 10.1016/j.cellsig.2020.109646. PubMed DOI PMC

Vered M., Peleg O., Taicher S., et al. The immunoprofile of odontogenic keratocyst (keratocystic odontogenic tumor) that includes expression of PTCH, SMO, GLI-1 and bcl-2 is similar to ameloblastoma but different from odontogenic cysts. J. Oral Pathol. Med. 2009;38:597–604. doi: 10.1111/j.1600-0714.2009.00778.x. PubMed DOI

Ren C., Amm H.M., DeVilliers P., et al. Targeting the sonic hedgehog pathway in keratocystic odontogenic tumor. J. Biol. Chem. 2012;287:27117–27125. doi: 10.1074/jbc.M112.367680. PubMed DOI PMC

Song X., Di Giovanni V., He N., et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum. Mol. Genet. 2009;18:2328–2343. doi: 10.1093/hmg/ddp165. PubMed DOI

Stojanov I.J., Schaefer I.-M., Menon R.S., et al. Biallelic PTCH1 inactivation is a dominant genomic change in sporadic keratocystic odontogenic tumors. Am. J. Surg. Pathol. 2020;44:553–560. doi: 10.1097/PAS.0000000000001407. PubMed DOI PMC

Qu J., Yu F., Hong Y., et al. Underestimated PTCH1 mutation rate in sporadic keratocystic odontogenic tumors. Oral Oncol. 2015;51:40–45. doi: 10.1016/j.oraloncology.2014.09.016. PubMed DOI

Pan S., Dong Q., Sun L.-S., et al. Mechanisms of inactivation of PTCH1 gene in nevoid basal cell carcinoma syndrome: modification of the two-hit hypothesis. Clin. Cancer Res. 2010;16:442–450. doi: 10.1158/1078-0432.CCR-09-2574. PubMed DOI

Rui Z., Li-Ying P., Jia-Fei Q., et al. Smoothened gene alterations in keratocystic odontogenic tumors. Head Face Med. 2014;10:36. doi: 10.1186/1746-160X-10-36. PubMed DOI PMC

Zhai J.M., Wang S., Hong Y.Y., et al. Detection of SMO gene mutations in odontogenic keratocyst. Zhonghua Kou Qiang Yi Xue Za Zhi. 2022;57:149–154. doi: 10.3760/cma.j.cn112144-20211214-00547. PubMed DOI

Hoyos Cadavid A.M., Kaminagakura E., Rodrigues M.F.S.D., et al. Immunohistochemical evaluation of sonic hedgehog signaling pathway proteins (Shh, Ptch1, Ptch2, Smo, Gli1, Gli2, and Gli3) in sporadic and syndromic odontogenic keratocysts. Clin. Oral Invest. 2019;23:153–159. doi: 10.1007/s00784-018-2421-2. PubMed DOI

Sun L.-S., Li X.-F., Li T.-J. PTCH1 and SMO gene alterations in keratocystic odontogenic tumors. J. Dent. Res. 2008;87:575–579. doi: 10.1177/154405910808700616. PubMed DOI

Suzuki M., Nagao K., Hatsuse H., et al. Molecular pathogenesis of keratocystic odontogenic tumors developing in nevoid basal cell carcinoma syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:348–353. doi: 10.1016/j.oooo.2013.06.017. PubMed DOI

Rodrigues K.S., Santos H.B. de P., de Morais E.F., et al. Immunohistochemical analysis of SHH, SMO and GLI-1 proteins in epithelial odontogenic lesions. Braz. Dent. J. 2022;33:91–99. doi: 10.1590/0103-6440202204972. PubMed DOI PMC

Ohki K., Kumamoto H., Ichinohasama R., et al. PTC gene mutations and expression of SHH, PTC, SMO, and GLI-1 in odontogenic keratocysts. Int. J. Oral Maxillofac. Surg. 2004;33:584–592. doi: 10.1016/j.ijom.2004.01.013. PubMed DOI

Tran P.V., Talbott G.C., Turbe-Doan A., et al. Downregulating hedgehog signaling reduces renal cystogenic potential of mouse models. J. Am. Soc. Nephrol. 2014;25:2201–2212. doi: 10.1681/ASN.2013070735. PubMed DOI PMC

Silva L.M., Jacobs D.T., Allard B.A., et al. Inhibition of Hedgehog signaling suppresses proliferation and microcyst formation of human Autosomal Dominant Polycystic Kidney Disease cells. Sci. Rep. 2018;8:4985. doi: 10.1038/s41598-018-23341-2. PubMed DOI PMC

Ma M., Legué E., Tian X., et al. Cell-autonomous hedgehog signaling is not required for Cyst Formation in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2019;30:2103–2111. doi: 10.1681/ASN.2018121274. PubMed DOI PMC

da Costa N.M.M., de Siqueira A.S., Ribeiro A.L.R., et al. Role of HIF-1α and CASPASE-3 in cystogenesis of odontogenic cysts and tumors. Clin. Oral Invest. 2018;22:141–149. doi: 10.1007/s00784-017-2090-6. PubMed DOI

Metgud R., Gupta K. Expression of cell cycle and apoptosis-related proteins in ameloblastoma and keratocystic odontogenic tumor. Ann. Diagn. Pathol. 2013;17:518–521. doi: 10.1016/j.anndiagpath.2013.06.006. PubMed DOI

Belibi F., Zafar I., Ravichandran K., et al. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD) Am. J. Physiol. Ren. Physiol. 2011;300:F1235–F1243. doi: 10.1152/ajprenal.00348.2010. PubMed DOI PMC

Mitrou G.K., Tosios K.I., Kyroudi A., et al. Odontogenic keratocyst expresses vascular endothelial growth factor: an immunohistochemical study. J. Oral Pathol. Med. 2009;38:470–475. doi: 10.1111/j.1600-0714.2009.00755.x. PubMed DOI

Akshatha B.K., Karuppiah K., Manjunath G.S., et al. Immunohistochemical evaluation of inducible nitric oxide synthase in the epithelial lining of odontogenic cysts: a qualitative and quantitative analysis. J. Oral Maxillofac. Pathol. 2017;21:375–381. doi: 10.4103/jomfp.JOMFP_96_17. PubMed DOI PMC

Greijer A.E., van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J. Clin. Pathol. 2004;57:1009–1014. doi: 10.1136/jcp.2003.015032. PubMed DOI PMC

da Costa N.M.M., Fialho A.D.V., Proietti C.C., et al. Role of hypoxia-related proteins in invasion of ameloblastoma cells: crosstalk between NOTCH1, hypoxia-inducible factor 1α, a disintegrin and metalloproteinase 12, and heparin-binding epidermal growth factor. Histopathology. 2016;69:99–106. doi: 10.1111/his.12922. PubMed DOI

de Mendonça R.P., Balbinot K.M., Martins B.V., et al. Hypoxia and proangiogenic proteins in human ameloblastoma. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-74693-7. PubMed DOI PMC

Pereira-Prado V., Vigil-Bastitta G., Sánchez-Romero C., et al. Immunoexpression of galectin-3 and its potential relation to hypoxia-inducible factor-1α in ameloblastomas. Biotech. Histochem. 2021;96:296–301. doi: 10.1080/10520295.2020.1800819. PubMed DOI

Ege B., Bozgeyik E., Bayazıt S., et al. Expression pattern of hypoxia-related genes in odontogenic cysts. Arch. Oral Biol. 2023;148 doi: 10.1016/j.archoralbio.2023.105639. PubMed DOI

Valladares K.J.P., Balbinot K.M., Lopes de Moraes A.T., et al. HIF-1α is associated with resistance to hypoxia-induced apoptosis in ameloblastoma. Int J Dent. 2021;2021 doi: 10.1155/2021/3060375. PubMed DOI PMC

da Costa N.M.M., Saab Abe C.T., Mitre G.P., et al. HIF-1α is overexpressed in odontogenic keratocyst suggesting activation of HIF-1α and NOTCH1 signaling pathways. Cells. 2019;8:E731. doi: 10.3390/cells8070731. PubMed DOI PMC

Zhong W.-Q., Li Z.-Z., Jiang H., Zou Y.-P., et al. Elevated ATF4 expression in odontogenic keratocysts Epithelia: potential involvement in tissue hypoxia and Stromal M2 macrophage infiltration. J. Histochem. Cytochem. 2019;67:801–812. doi: 10.1369/0022155419871550. PubMed DOI PMC

Gonçalves C.K., Fregnani E.R., Leon J.E., et al. Immunohistochemical expression of p63, epidermal growth factor receptor (EGFR) and notch-1 in radicular cysts, dentigerous cysts and keratocystic odontogenic tumors. Braz. Dent. J. 2012;23:337–343. doi: 10.1590/s0103-64402012000400005. PubMed DOI

Ambele M.A., Robinson L., van Heerden M.B., et al. Comparative molecular genetics of odontogenic keratocysts in sporadic and syndromic patients. Mod. Pathol. 2023;36 doi: 10.1016/j.modpat.2022.100002. PubMed DOI

Hofherr A., Busch T., Köttgen M. HIF-1α drives cyst growth in advanced stages of autosomal dominant polycystic kidney disease. Kidney Int. 2018;94:849–851. doi: 10.1016/j.kint.2018.07.012. PubMed DOI

Ecder T., Melnikov V.Y., Stanley M., et al. Caspases, Bcl-2 proteins and apoptosis in autosomal-dominant polycystic kidney disease. Kidney Int. 2002;61:1220–1230. doi: 10.1046/j.1523-1755.2002.00250.x. PubMed DOI

Tao Y., Kim J., Faubel S., et al. Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc. Natl. Acad. Sci. U. S. A. 2005;102:6954–6959. doi: 10.1073/pnas.0408518102. PubMed DOI PMC

Tao Y., Zafar I., Kim J., et al. Caspase-3 gene deletion prolongs survival in polycystic kidney disease. J. Am. Soc. Nephrol. 2008;19:749–755. doi: 10.1681/ASN.2006121378. PubMed DOI PMC

Idowu J., Home T., Patel N., et al. Aberrant regulation of Notch3 signaling pathway in polycystic kidney disease. Sci. Rep. 2018;8:3340. doi: 10.1038/s41598-018-21132-3. PubMed DOI PMC

Radadiya P.S., Thornton M.M., Daniel E.A., et al. Quinomycin A reduces cyst progression in polycystic kidney disease. Faseb. J. 2021;35 doi: 10.1096/fj.202002490R. PubMed DOI PMC

Martins C.A., Rivero E.R.C., Dufloth R.M., et al. Immunohistochemical detection of factors related to cellular proliferation and apoptosis in radicular and dentigerous cysts. J. Endod. 2011;37:36–39. doi: 10.1016/j.joen.2010.09.010. PubMed DOI

Kimi K., Kumamoto H., Ooya K., et al. Immunohistochemical analysis of cell-cycle- and apoptosis-related factors in lining epithelium of odontogenic keratocysts. J. Oral Pathol. Med. 2001;30:434–442. doi: 10.1034/j.1600-0714.2001.300709.x. PubMed DOI

Redman R.S., Paal E., Chauhan S., et al. Botryoid odontogenic cyst. Exploration of proliferative activity, apoptosis and expression of TP53 and BCL2 compared to the histologically identical lateral periodontal and gingival cysts. Biotech. Histochem. 2017;92:569–576. doi: 10.1080/10520295.2017.1367231. PubMed DOI

Basile J.R., Castle J.T., Redman R.S. Immunohistochemical profile of the anti-apoptosis, apoptosis and proliferation markers Bcl-2, caspase-3, p53, and Ki-67 in botryoid odontogenic cysts compared to lateral periodontal cysts and gingival cysts of the adult. Biotech. Histochem. 2021;96:263–268. doi: 10.1080/10520295.2020.1790660. PubMed DOI

Nishimura A., Ueno S., Niwa S., et al. Correlation of lining thickness and expression of alpha 2 and alpha 3 integrins within the epithelial lining of odontogenic cysts. J. Osaka Dent. Univ. 1998;32:43–46. PubMed

Ma M., Gallagher A.-R., Somlo S. Ciliary mechanisms of Cyst Formation in polycystic kidney disease. Cold Spring Harbor Perspect. Biol. 2017;9:a028209. doi: 10.1101/cshperspect.a028209. PubMed DOI PMC

Cordido A., Besada-Cerecedo L., García-González M.A. The genetic and cellular basis of autosomal dominant polycystic kidney disease-A primer for clinicians. Front. Pediatr. 2017;5:279. doi: 10.3389/fped.2017.00279. PubMed DOI PMC

Moore E.R. Primary cilia: the new face of craniofacial research. Biomolecules. 2022;12:1724. doi: 10.3390/biom12121724. PubMed DOI PMC

Venkatesh D. Primary cilia. J. Oral Maxillofac. Pathol. 2017;21:8–10. doi: 10.4103/jomfp.JOMFP_48_17. PubMed DOI PMC

Ohazama A., Sharpe P.T. In: Craniofacial Development and Growth in Polycystic Kidney Disease. Li X., editor. Codon Publications; Brisbane (AU): 2015. http://www.ncbi.nlm.nih.gov/books/NBK373372/ (Polycystic Kidney Disease). (accessed July 19, 2022) PubMed

Zhu E.-X., Xiao J., Liu T.-J., et al. Different histogenesis of experimental odontogenic cysts by the renal subcapsular transplantation of tooth germs of mice. Oral Med. Pathol. 2000;5:83–86. doi: 10.3353/omp.5.83. DOI

Svärd J., Heby-Henricson K., Henricson K.H., et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell. 2006;10:187–197. doi: 10.1016/j.devcel.2005.12.013. PubMed DOI

Ma M., Tian X., Igarashi P., et al. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 2013;45:1004–1012. doi: 10.1038/ng.2715. PubMed DOI PMC

Sato Y., Yamamura M., Sasaki M., et al. Blockade of hedgehog signaling attenuates biliary cystogenesis in the polycystic kidney (PCK) rat. Am. J. Pathol. 2018;188:2251–2263. doi: 10.1016/j.ajpath.2018.06.014. PubMed DOI

Kiseleva A.A., Korobeynikov V.A., Nikonova A.S., et al. Unexpected activities in regulating ciliation contribute to off-target effects of targeted drugs. Clin. Cancer Res. 2019;25:4179–4193. doi: 10.1158/1078-0432.CCR-18-3535. PubMed DOI PMC

Ally M.S., Tang J.Y., Joseph T., et al. The use of vismodegib to shrink keratocystic odontogenic tumors in patients with basal cell nevus syndrome. JAMA Dermatol. 2014;150:542–545. doi: 10.1001/jamadermatol.2013.7444. PubMed DOI PMC

Goldberg L.H., Landau J.M., Moody M.N., et al. Resolution of odontogenic keratocysts of the jaw in basal cell nevus syndrome with GDC-0449. Arch. Dermatol. 2011;147:839–841. doi: 10.1001/archdermatol.2011.50. PubMed DOI

Zhai J., Zhang H., Zhang J., et al. Effect of the sonic hedgehog inhibitor GDC-0449 on an in vitro isogenic cellular model simulating odontogenic keratocysts. Int. J. Oral Sci. 2019;11:4. doi: 10.1038/s41368-018-0034-x. PubMed DOI PMC

Kesireddy M., Mendiola V.L., Jana B., et al. Long-term response to vismodegib in a patient with gorlin-goltz syndrome: a case report and review of pathological mechanisms involved. Cureus. 2019;11:e5383. doi: 10.7759/cureus.5383. PubMed DOI PMC

Nowak K.L., Edelstein C.L. Apoptosis and autophagy in polycystic kidney disease (PKD) Cell. Signal. 2020;68 doi: 10.1016/j.cellsig.2019.109518. PubMed DOI PMC

Aragaki T., Michi Y., Katsube K., et al. Comprehensive keratin profiling reveals different histopathogenesis of keratocystic odontogenic tumor and orthokeratinized odontogenic cyst. Hum. Pathol. 2010;41:1718–1725. doi: 10.1016/j.humpath.2010.05.007. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...