Primary cilia and hypoxia-associated signaling in developmental odontogenic cysts in relation to autosomal dominant polycystic kidney disease - A novel insight
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37389068
PubMed Central
PMC10300219
DOI
10.1016/j.heliyon.2023.e17130
PII: S2405-8440(23)04338-4
Knihovny.cz E-zdroje
- Klíčová slova
- Dentigerous cyst, Developmental odontogenic cyst, Odontogenic keratocyst, Polycystic kidney disease, Polycystin, Primary cilia, Sonic hedgehog pathway,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Developmental cysts are pathological epithelial-lined cavities arising in various organs as a result of systemic or hereditary diseases. Molecular mechanisms involved in the formation of developmental odontogenic cysts (OCs) are not fully understood yet; the cystogenesis of renal cysts originating from the autosomal dominant polycystic kidney disease (ADPKD) has been, however, explored in much greater detail. This narrative review aimed i) to summarize molecular and cellular processes involved in the formation and growth of developmental OCs, especially dentigerous cysts (DCs) and odontogenic keratocysts (OKCs), ii) to find if there are any similarities in their cystogenesis to ADPKD cysts, and, based on that, iii) to suggest potential factors, candidate molecules, and mechanisms that could be involved in the DC formation, thus proposing further research directions. Here we suggest a possible association of developmental OCs with primary cilia disruption and with hypoxia, which have been previously linked with cyst formation in ADPKD patients. This is illustrated on the imagery of tissues from an ADPKD patient (renal cyst) and from developmental OCs, supporting the similarities in cell proliferation, apoptosis, and primary cilia distribution in DC/OKC/ADPKD tissues. Based on all that, we propose a novel hypothesis of OCs formation suggesting a crucial role of mutations associated with the signaling pathways of primary cilia (in particular, Sonic Hedgehog). These can lead to excessive proliferation and formation of cell agglomerates, which is followed by hypoxia-driven apoptosis in the centers of such agglomerates (controlled by molecules such as Hypoxia-inducible factor-1 alpha), leading to cavity formation and, finally, the OCs development. Based on this, we propose future perspectives in the investigation of OC pathogenesis.
Clinic of Maxillofacial Surgery University Hospital Brno Jihlavska 20 62500 Brno Czech Republic
Faculty of Medicine Masaryk University Kamenice 5 62500 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czech Republic
Zobrazit více v PubMed
Bilodeau E.A., Prasad J.L., Alawi F., et al. Molecular and genetic aspects of odontogenic lesions. Head Neck Pathol. 2014;8:400–410. doi: 10.1007/s12105-014-0588-7. PubMed DOI PMC
Pavelić B., Levanat S., Crnić I., et al. PTCH gene altered in dentigerous cysts. J. Oral Pathol. Med. 2001;30:569–576. doi: 10.1034/j.1600-0714.2001.300911.x. PubMed DOI
Speight P.M. fifth ed. Wiley-Blackwell; Hoboken, NJ: 2022. Shear’s Cysts of the Oral and Maxillofacial Regions.
Smith R.A. In: Chapter 25. Jaw Cysts. third ed. Lalwani A.K., editor. The McGraw-Hill Companies; New York, NY: 2012. pp. 394–406. (CURRENT Diagnosis & Treatment in Otolaryngology—Head & Neck Surgery).
Johnson N.R., Gannon O.M., Savage N.W., Batstone M.D. Frequency of odontogenic cysts and tumors: a systematic review. J. Investig. Clin. Dent. 2014;5:9–14. doi: 10.1111/jicd.12044. PubMed DOI
Levanat S., Pavelić B., Crnić I., et al. Involvement of PTCH gene in various noninflammatory cysts. J. Mol. Med. 2000;78:140–146. doi: 10.1007/s001090000090. PubMed DOI
Yin X., Prince W.K., Blumenfeld J.D., et al. Spleen phenotype in autosomal dominant polycystic kidney disease. Clin. Radiol. 2019;74:975.e17–975.e24. doi: 10.1016/j.crad.2019.08.015. PubMed DOI
Vasileva V.Y., Sultanova R.F., Sudarikova A.V., et al. Insights into the molecular mechanisms of polycystic kidney diseases. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.693130. PubMed DOI PMC
Ghafouri-Fard S., Atarbashi-Moghadam S., Taheri M. Genetic factors in the pathogenesis of ameloblastoma, dentigerous cyst and odontogenic keratocyst. Gene. 2021;771 doi: 10.1016/j.gene.2020.145369. PubMed DOI
Koslowski S., Latapy C., Auvray P., et al. An overview of in vivo and in vitro models for autosomal dominant polycystic kidney disease: a journey from 3D-cysts to mini-pigs. Int. J. Mol. Sci. 2020;21:E4537. doi: 10.3390/ijms21124537. PubMed DOI PMC
Ma M. Cilia and polycystic kidney disease. Semin. Cell Dev. Biol. 2021;110:139–148. doi: 10.1016/j.semcdb.2020.05.003. PubMed DOI
Buchholz B., Eckardt K.-U. Role of oxygen and the HIF-pathway in polycystic kidney disease. Cell. Signal. 2020;69 doi: 10.1016/j.cellsig.2020.109524. PubMed DOI
Anvarian Z., Mykytyn K., Mukhopadhyay S., et al. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 2019;15:199–219. doi: 10.1038/s41581-019-0116-9. PubMed DOI PMC
Thivichon-Prince B., Couble M.L., Giamarchi A., et al. Primary cilia of odontoblasts: possible role in molar morphogenesis. J. Dent. Res. 2009;88:910–915. doi: 10.1177/0022034509345822. PubMed DOI
Hampl M., Cela P., Szabo-Rogers H.L., et al. Role of primary cilia in odontogenesis. J. Dent. Res. 2017;96:965–974. doi: 10.1177/0022034517713688. PubMed DOI PMC
Anoop U.R., Verma K., Narayanan K. Primary cilia in the pathogenesis of dentigerous cyst: a new hypothesis based on role of primary cilia in autosomal dominant polycystic kidney disease. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011;111:608–617. doi: 10.1016/j.tripleo.2010.12.016. PubMed DOI
Pandiar D., Kumar A., Shameena P.M. Primary cilia in odontogenic cysts. Int. Poster J. Dent. Oral Med. 2013;2 https://www.quintessence-publishing.com/deu/en/journal/international-poster-journal-of-dentistry-and-oral-medicine/2013/02 poster 651. (accessed April 23, 2023)
Filušová J., Putnová I., Hurník P., et al. Alteration of primary cilia morphology and associated signalling in ameloblastoma. Arch. Oral Biol. 2022;142 doi: 10.1016/j.archoralbio.2022.105499. PubMed DOI
Barrett A.W., Sneddon K.J., Tighe J.V., et al. Dentigerous cyst and ameloblastoma of the jaws. Int. J. Surg. Pathol. 2017;25:141–147. doi: 10.1177/1066896916666319. PubMed DOI
Kondamari S.K., Taneeru S., Guttikonda V.R., et al. Ameloblastoma arising in the wall of dentigerous cyst: report of a rare entity. J. Oral Maxillofac. Pathol. 2018;22 doi: 10.4103/jomfp.JOMFP_197_15. S7–S10. PubMed DOI PMC
Bhushan N.S., Rao N.M., Navatha M., et al. Ameloblastoma arising from a dentigerous cyst-a case report. J. Clin. Diagn. Res. 2014;8:ZD23–25. doi: 10.7860/JCDR/2014/5944.4387. PubMed DOI PMC
Jayanandan M., Shamsudeen S.M., Srinivasan S.K., et al. Desmoplastic ameloblastoma arising in a dentigerous cyst - a case report and discussion. J. Clin. Diagn. Res. 2016;10:ZD38–40. doi: 10.7860/JCDR/2016/20013.8362. PubMed DOI PMC
Kumar V.M., Chakravarthy A., Sathyanarayanan R., et al. Hybrid ameloblastoma arising from a treated odontogenic keratocyst of the mandible: a case report with literature review. Indian J. Otolaryngol. Head Neck Surg. 2022;74:6180–6188. doi: 10.1007/s12070-021-02889-y. PubMed DOI PMC
Ta C.M., Vien T.N., Ng L.C.T., DeCaen P.G. Structure and function of polycystin channels in primary cilia. Cell. Signal. 2020;72 doi: 10.1016/j.cellsig.2020.109626. PubMed DOI PMC
Park E.Y., Sung Y.H., Yang M.H., et al. Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J. Biol. Chem. 2009;284:7214–7222. doi: 10.1074/jbc.M805890200. PubMed DOI PMC
Nadar Singarayan J.M., Rooban T., Joshua E., et al. Immunohistochemical study of polycystin-1 in dentigerous cysts. Indian J. Dent. Res. 2014;25:762–766. doi: 10.4103/0970-9290.152198. PubMed DOI
Chae S.W., Cho E.-Y., Park M.S., et al. Polycystin-1 expression in fetal, adult and autosomal dominant polycystic kidney. J. Kor. Med. Sci. 2006;21:425–429. doi: 10.3346/jkms.2006.21.3.425. PubMed DOI PMC
Li H., Yang L., Hou Y., et al. Potential involvement of polycystins in the pathogenesis of ameloblastomas: analysis based on bioinformatics and immunohistochemistry. Arch. Oral Biol. 2023;149 doi: 10.1016/j.archoralbio.2023.105662. PubMed DOI
Castelli M., De Pascalis C., Distefano G., et al. Regulation of the microtubular cytoskeleton by Polycystin-1 favors focal adhesions turnover to modulate cell adhesion and migration. BMC Cell Biol. 2015;16:15. doi: 10.1186/s12860-015-0059-3. PubMed DOI PMC
Drummond I.A. Polycystins, focal adhesions and extracellular matrix interactions. Biochim. Biophys. Acta. 2011;1812:1322–1326. doi: 10.1016/j.bbadis.2011.03.003. PubMed DOI PMC
Godoy G.P., da Silveira E.J.D., Lins R.D.A.U., et al. Immunohistochemical profile of integrins in enlarged dental follicles and dentigerous cysts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007;104:e29–e34. doi: 10.1016/j.tripleo.2007.05.024. PubMed DOI
Battini L., Fedorova E., Macip S., et al. Stable knockdown of polycystin-1 confers integrin-alpha2beta1-mediated anoikis resistance. J. Am. Soc. Nephrol. 2006;17:3049–3058. doi: 10.1681/ASN.2006030234. PubMed DOI
Lee K., Boctor S., Barisoni L.M.C., et al. Inactivation of integrin-β1 prevents the development of polycystic kidney disease after the loss of polycystin-1. J. Am. Soc. Nephrol. 2015;26:888–895. doi: 10.1681/ASN.2013111179. PubMed DOI PMC
Zhang Y., Reif G., Wallace D.P. Extracellular matrix, integrins, and focal adhesion signaling in polycystic kidney disease. Cell. Signal. 2020;72 doi: 10.1016/j.cellsig.2020.109646. PubMed DOI PMC
Vered M., Peleg O., Taicher S., et al. The immunoprofile of odontogenic keratocyst (keratocystic odontogenic tumor) that includes expression of PTCH, SMO, GLI-1 and bcl-2 is similar to ameloblastoma but different from odontogenic cysts. J. Oral Pathol. Med. 2009;38:597–604. doi: 10.1111/j.1600-0714.2009.00778.x. PubMed DOI
Ren C., Amm H.M., DeVilliers P., et al. Targeting the sonic hedgehog pathway in keratocystic odontogenic tumor. J. Biol. Chem. 2012;287:27117–27125. doi: 10.1074/jbc.M112.367680. PubMed DOI PMC
Song X., Di Giovanni V., He N., et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum. Mol. Genet. 2009;18:2328–2343. doi: 10.1093/hmg/ddp165. PubMed DOI
Stojanov I.J., Schaefer I.-M., Menon R.S., et al. Biallelic PTCH1 inactivation is a dominant genomic change in sporadic keratocystic odontogenic tumors. Am. J. Surg. Pathol. 2020;44:553–560. doi: 10.1097/PAS.0000000000001407. PubMed DOI PMC
Qu J., Yu F., Hong Y., et al. Underestimated PTCH1 mutation rate in sporadic keratocystic odontogenic tumors. Oral Oncol. 2015;51:40–45. doi: 10.1016/j.oraloncology.2014.09.016. PubMed DOI
Pan S., Dong Q., Sun L.-S., et al. Mechanisms of inactivation of PTCH1 gene in nevoid basal cell carcinoma syndrome: modification of the two-hit hypothesis. Clin. Cancer Res. 2010;16:442–450. doi: 10.1158/1078-0432.CCR-09-2574. PubMed DOI
Rui Z., Li-Ying P., Jia-Fei Q., et al. Smoothened gene alterations in keratocystic odontogenic tumors. Head Face Med. 2014;10:36. doi: 10.1186/1746-160X-10-36. PubMed DOI PMC
Zhai J.M., Wang S., Hong Y.Y., et al. Detection of SMO gene mutations in odontogenic keratocyst. Zhonghua Kou Qiang Yi Xue Za Zhi. 2022;57:149–154. doi: 10.3760/cma.j.cn112144-20211214-00547. PubMed DOI
Hoyos Cadavid A.M., Kaminagakura E., Rodrigues M.F.S.D., et al. Immunohistochemical evaluation of sonic hedgehog signaling pathway proteins (Shh, Ptch1, Ptch2, Smo, Gli1, Gli2, and Gli3) in sporadic and syndromic odontogenic keratocysts. Clin. Oral Invest. 2019;23:153–159. doi: 10.1007/s00784-018-2421-2. PubMed DOI
Sun L.-S., Li X.-F., Li T.-J. PTCH1 and SMO gene alterations in keratocystic odontogenic tumors. J. Dent. Res. 2008;87:575–579. doi: 10.1177/154405910808700616. PubMed DOI
Suzuki M., Nagao K., Hatsuse H., et al. Molecular pathogenesis of keratocystic odontogenic tumors developing in nevoid basal cell carcinoma syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:348–353. doi: 10.1016/j.oooo.2013.06.017. PubMed DOI
Rodrigues K.S., Santos H.B. de P., de Morais E.F., et al. Immunohistochemical analysis of SHH, SMO and GLI-1 proteins in epithelial odontogenic lesions. Braz. Dent. J. 2022;33:91–99. doi: 10.1590/0103-6440202204972. PubMed DOI PMC
Ohki K., Kumamoto H., Ichinohasama R., et al. PTC gene mutations and expression of SHH, PTC, SMO, and GLI-1 in odontogenic keratocysts. Int. J. Oral Maxillofac. Surg. 2004;33:584–592. doi: 10.1016/j.ijom.2004.01.013. PubMed DOI
Tran P.V., Talbott G.C., Turbe-Doan A., et al. Downregulating hedgehog signaling reduces renal cystogenic potential of mouse models. J. Am. Soc. Nephrol. 2014;25:2201–2212. doi: 10.1681/ASN.2013070735. PubMed DOI PMC
Silva L.M., Jacobs D.T., Allard B.A., et al. Inhibition of Hedgehog signaling suppresses proliferation and microcyst formation of human Autosomal Dominant Polycystic Kidney Disease cells. Sci. Rep. 2018;8:4985. doi: 10.1038/s41598-018-23341-2. PubMed DOI PMC
Ma M., Legué E., Tian X., et al. Cell-autonomous hedgehog signaling is not required for Cyst Formation in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2019;30:2103–2111. doi: 10.1681/ASN.2018121274. PubMed DOI PMC
da Costa N.M.M., de Siqueira A.S., Ribeiro A.L.R., et al. Role of HIF-1α and CASPASE-3 in cystogenesis of odontogenic cysts and tumors. Clin. Oral Invest. 2018;22:141–149. doi: 10.1007/s00784-017-2090-6. PubMed DOI
Metgud R., Gupta K. Expression of cell cycle and apoptosis-related proteins in ameloblastoma and keratocystic odontogenic tumor. Ann. Diagn. Pathol. 2013;17:518–521. doi: 10.1016/j.anndiagpath.2013.06.006. PubMed DOI
Belibi F., Zafar I., Ravichandran K., et al. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD) Am. J. Physiol. Ren. Physiol. 2011;300:F1235–F1243. doi: 10.1152/ajprenal.00348.2010. PubMed DOI PMC
Mitrou G.K., Tosios K.I., Kyroudi A., et al. Odontogenic keratocyst expresses vascular endothelial growth factor: an immunohistochemical study. J. Oral Pathol. Med. 2009;38:470–475. doi: 10.1111/j.1600-0714.2009.00755.x. PubMed DOI
Akshatha B.K., Karuppiah K., Manjunath G.S., et al. Immunohistochemical evaluation of inducible nitric oxide synthase in the epithelial lining of odontogenic cysts: a qualitative and quantitative analysis. J. Oral Maxillofac. Pathol. 2017;21:375–381. doi: 10.4103/jomfp.JOMFP_96_17. PubMed DOI PMC
Greijer A.E., van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J. Clin. Pathol. 2004;57:1009–1014. doi: 10.1136/jcp.2003.015032. PubMed DOI PMC
da Costa N.M.M., Fialho A.D.V., Proietti C.C., et al. Role of hypoxia-related proteins in invasion of ameloblastoma cells: crosstalk between NOTCH1, hypoxia-inducible factor 1α, a disintegrin and metalloproteinase 12, and heparin-binding epidermal growth factor. Histopathology. 2016;69:99–106. doi: 10.1111/his.12922. PubMed DOI
de Mendonça R.P., Balbinot K.M., Martins B.V., et al. Hypoxia and proangiogenic proteins in human ameloblastoma. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-74693-7. PubMed DOI PMC
Pereira-Prado V., Vigil-Bastitta G., Sánchez-Romero C., et al. Immunoexpression of galectin-3 and its potential relation to hypoxia-inducible factor-1α in ameloblastomas. Biotech. Histochem. 2021;96:296–301. doi: 10.1080/10520295.2020.1800819. PubMed DOI
Ege B., Bozgeyik E., Bayazıt S., et al. Expression pattern of hypoxia-related genes in odontogenic cysts. Arch. Oral Biol. 2023;148 doi: 10.1016/j.archoralbio.2023.105639. PubMed DOI
Valladares K.J.P., Balbinot K.M., Lopes de Moraes A.T., et al. HIF-1α is associated with resistance to hypoxia-induced apoptosis in ameloblastoma. Int J Dent. 2021;2021 doi: 10.1155/2021/3060375. PubMed DOI PMC
da Costa N.M.M., Saab Abe C.T., Mitre G.P., et al. HIF-1α is overexpressed in odontogenic keratocyst suggesting activation of HIF-1α and NOTCH1 signaling pathways. Cells. 2019;8:E731. doi: 10.3390/cells8070731. PubMed DOI PMC
Zhong W.-Q., Li Z.-Z., Jiang H., Zou Y.-P., et al. Elevated ATF4 expression in odontogenic keratocysts Epithelia: potential involvement in tissue hypoxia and Stromal M2 macrophage infiltration. J. Histochem. Cytochem. 2019;67:801–812. doi: 10.1369/0022155419871550. PubMed DOI PMC
Gonçalves C.K., Fregnani E.R., Leon J.E., et al. Immunohistochemical expression of p63, epidermal growth factor receptor (EGFR) and notch-1 in radicular cysts, dentigerous cysts and keratocystic odontogenic tumors. Braz. Dent. J. 2012;23:337–343. doi: 10.1590/s0103-64402012000400005. PubMed DOI
Ambele M.A., Robinson L., van Heerden M.B., et al. Comparative molecular genetics of odontogenic keratocysts in sporadic and syndromic patients. Mod. Pathol. 2023;36 doi: 10.1016/j.modpat.2022.100002. PubMed DOI
Hofherr A., Busch T., Köttgen M. HIF-1α drives cyst growth in advanced stages of autosomal dominant polycystic kidney disease. Kidney Int. 2018;94:849–851. doi: 10.1016/j.kint.2018.07.012. PubMed DOI
Ecder T., Melnikov V.Y., Stanley M., et al. Caspases, Bcl-2 proteins and apoptosis in autosomal-dominant polycystic kidney disease. Kidney Int. 2002;61:1220–1230. doi: 10.1046/j.1523-1755.2002.00250.x. PubMed DOI
Tao Y., Kim J., Faubel S., et al. Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc. Natl. Acad. Sci. U. S. A. 2005;102:6954–6959. doi: 10.1073/pnas.0408518102. PubMed DOI PMC
Tao Y., Zafar I., Kim J., et al. Caspase-3 gene deletion prolongs survival in polycystic kidney disease. J. Am. Soc. Nephrol. 2008;19:749–755. doi: 10.1681/ASN.2006121378. PubMed DOI PMC
Idowu J., Home T., Patel N., et al. Aberrant regulation of Notch3 signaling pathway in polycystic kidney disease. Sci. Rep. 2018;8:3340. doi: 10.1038/s41598-018-21132-3. PubMed DOI PMC
Radadiya P.S., Thornton M.M., Daniel E.A., et al. Quinomycin A reduces cyst progression in polycystic kidney disease. Faseb. J. 2021;35 doi: 10.1096/fj.202002490R. PubMed DOI PMC
Martins C.A., Rivero E.R.C., Dufloth R.M., et al. Immunohistochemical detection of factors related to cellular proliferation and apoptosis in radicular and dentigerous cysts. J. Endod. 2011;37:36–39. doi: 10.1016/j.joen.2010.09.010. PubMed DOI
Kimi K., Kumamoto H., Ooya K., et al. Immunohistochemical analysis of cell-cycle- and apoptosis-related factors in lining epithelium of odontogenic keratocysts. J. Oral Pathol. Med. 2001;30:434–442. doi: 10.1034/j.1600-0714.2001.300709.x. PubMed DOI
Redman R.S., Paal E., Chauhan S., et al. Botryoid odontogenic cyst. Exploration of proliferative activity, apoptosis and expression of TP53 and BCL2 compared to the histologically identical lateral periodontal and gingival cysts. Biotech. Histochem. 2017;92:569–576. doi: 10.1080/10520295.2017.1367231. PubMed DOI
Basile J.R., Castle J.T., Redman R.S. Immunohistochemical profile of the anti-apoptosis, apoptosis and proliferation markers Bcl-2, caspase-3, p53, and Ki-67 in botryoid odontogenic cysts compared to lateral periodontal cysts and gingival cysts of the adult. Biotech. Histochem. 2021;96:263–268. doi: 10.1080/10520295.2020.1790660. PubMed DOI
Nishimura A., Ueno S., Niwa S., et al. Correlation of lining thickness and expression of alpha 2 and alpha 3 integrins within the epithelial lining of odontogenic cysts. J. Osaka Dent. Univ. 1998;32:43–46. PubMed
Ma M., Gallagher A.-R., Somlo S. Ciliary mechanisms of Cyst Formation in polycystic kidney disease. Cold Spring Harbor Perspect. Biol. 2017;9:a028209. doi: 10.1101/cshperspect.a028209. PubMed DOI PMC
Cordido A., Besada-Cerecedo L., García-González M.A. The genetic and cellular basis of autosomal dominant polycystic kidney disease-A primer for clinicians. Front. Pediatr. 2017;5:279. doi: 10.3389/fped.2017.00279. PubMed DOI PMC
Moore E.R. Primary cilia: the new face of craniofacial research. Biomolecules. 2022;12:1724. doi: 10.3390/biom12121724. PubMed DOI PMC
Venkatesh D. Primary cilia. J. Oral Maxillofac. Pathol. 2017;21:8–10. doi: 10.4103/jomfp.JOMFP_48_17. PubMed DOI PMC
Ohazama A., Sharpe P.T. In: Craniofacial Development and Growth in Polycystic Kidney Disease. Li X., editor. Codon Publications; Brisbane (AU): 2015. http://www.ncbi.nlm.nih.gov/books/NBK373372/ (Polycystic Kidney Disease). (accessed July 19, 2022) PubMed
Zhu E.-X., Xiao J., Liu T.-J., et al. Different histogenesis of experimental odontogenic cysts by the renal subcapsular transplantation of tooth germs of mice. Oral Med. Pathol. 2000;5:83–86. doi: 10.3353/omp.5.83. DOI
Svärd J., Heby-Henricson K., Henricson K.H., et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell. 2006;10:187–197. doi: 10.1016/j.devcel.2005.12.013. PubMed DOI
Ma M., Tian X., Igarashi P., et al. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 2013;45:1004–1012. doi: 10.1038/ng.2715. PubMed DOI PMC
Sato Y., Yamamura M., Sasaki M., et al. Blockade of hedgehog signaling attenuates biliary cystogenesis in the polycystic kidney (PCK) rat. Am. J. Pathol. 2018;188:2251–2263. doi: 10.1016/j.ajpath.2018.06.014. PubMed DOI
Kiseleva A.A., Korobeynikov V.A., Nikonova A.S., et al. Unexpected activities in regulating ciliation contribute to off-target effects of targeted drugs. Clin. Cancer Res. 2019;25:4179–4193. doi: 10.1158/1078-0432.CCR-18-3535. PubMed DOI PMC
Ally M.S., Tang J.Y., Joseph T., et al. The use of vismodegib to shrink keratocystic odontogenic tumors in patients with basal cell nevus syndrome. JAMA Dermatol. 2014;150:542–545. doi: 10.1001/jamadermatol.2013.7444. PubMed DOI PMC
Goldberg L.H., Landau J.M., Moody M.N., et al. Resolution of odontogenic keratocysts of the jaw in basal cell nevus syndrome with GDC-0449. Arch. Dermatol. 2011;147:839–841. doi: 10.1001/archdermatol.2011.50. PubMed DOI
Zhai J., Zhang H., Zhang J., et al. Effect of the sonic hedgehog inhibitor GDC-0449 on an in vitro isogenic cellular model simulating odontogenic keratocysts. Int. J. Oral Sci. 2019;11:4. doi: 10.1038/s41368-018-0034-x. PubMed DOI PMC
Kesireddy M., Mendiola V.L., Jana B., et al. Long-term response to vismodegib in a patient with gorlin-goltz syndrome: a case report and review of pathological mechanisms involved. Cureus. 2019;11:e5383. doi: 10.7759/cureus.5383. PubMed DOI PMC
Nowak K.L., Edelstein C.L. Apoptosis and autophagy in polycystic kidney disease (PKD) Cell. Signal. 2020;68 doi: 10.1016/j.cellsig.2019.109518. PubMed DOI PMC
Aragaki T., Michi Y., Katsube K., et al. Comprehensive keratin profiling reveals different histopathogenesis of keratocystic odontogenic tumor and orthokeratinized odontogenic cyst. Hum. Pathol. 2010;41:1718–1725. doi: 10.1016/j.humpath.2010.05.007. PubMed DOI